

Special Functions in Feynman Integrals

Sebastian Pögel, University of Mainz Galaxies meet QCD 2024 23rd February 2024, ETH Zurich

Feynman Integrals

Disclaimer:

All examples given are in **even** dimensions

Gravity

post-Minkowskian potential corrections

Theory independent building blocks capturing most loop-level information

$$I_{\nu_1...\nu_m} = \int \prod_i \frac{\mathrm{d}^d \ell_i}{i\pi^{d/2}} \frac{1}{\prod_j D_j^{\nu_j}}$$

Using IBPs and symmetry

Basis of Master Integrals

Complexity driven by #scales and #loops

Differential Equations

"Main" tool to evaluate Feynman Integrals

Basis of Master Integrals $I=\{I_1,\dots,I_n\}$ depending on kinematic variables ${\mathcal X}$ in dimension $d=d_0-2{arepsilon}$

$$J = \mathbb{P} \exp\left(\varepsilon \int \tilde{\mathcal{A}}\right) J_0$$

Solution given by path-ordered exponential
$$J = \mathbb{P} \exp \left(\varepsilon \int \tilde{\mathcal{A}} \right) J_0$$
 Let $\mathcal{C}(t)$ be an integration contour with $t \in [0,1]$ $\mathcal{C}(0) = x_0$ $\mathcal{C}(1) = x$ and $\tilde{\mathcal{A}} = \tilde{A}(t)$
$$J = \varepsilon^0 J_0 + \varepsilon^1 \int_0^1 \mathrm{d}t \tilde{A}(t) J_0 + \varepsilon^2 \int_0^1 \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \tilde{A}(t_1) \tilde{A}(t_2) J_0 + \mathcal{O}(\varepsilon^3)$$

Geometries of Feynman Integrals

Integrals associated to geometries

Determines suitable function space

Complicated geometry $\hat{=}$ complicated functions

Riemann Sphere

Polylogarithms

"Well understood"

Elliptic curve

Elliptic Integrals, modular forms, Elliptic Polylogarithms

> Feasible, but technically challenging

Calabi—Yau manifolds

??
Series expansions

Only simplest cases feasible

Higher-genus curves

Higher genus polylogarithms in active research

Currently impossible

Simple examples: Logarithms

Starting at one-loop, all we need are logarithms and dilogarithms

$$\log(x) = \int_0^x \frac{\mathrm{d}t}{t}$$

$$\operatorname{Li}_{2}(x) = -\int_{0}^{x} \frac{\mathrm{d}t}{t} \log(1 - t) = -\int_{0}^{x} \frac{\mathrm{d}t_{1}}{t_{1}} \int_{0}^{1 - t_{1}} \frac{\mathrm{d}t_{2}}{t_{2}}$$

Some one-loop integrals in $d=4-2\varepsilon$

Generalized Polylogs (GPLs)

$$G(a_1, a_2, \dots, a_n; x) = \int_0^x \frac{\mathrm{d}x_1}{x_1 - a_1} G(a_2, \dots, a_n; x_1)$$

Length is called transcendental weight

Example of class of functions called Chen iterated integrals with kernels $\omega = \frac{\mathrm{d}x}{x-a} = \mathrm{d}\log(x-a)$

$$\omega = \frac{\mathrm{d}x}{x - a} = \mathrm{d}\log(x - a)$$

Closed under integration:

$$\int (\text{rational function}) \times (\text{GPL}) = \sum (\text{GPLs})$$

(Partial fraction + IBP)

Contains classical polylogs:

$$\log(x)^n = n!G(\underbrace{0, \dots, 0}; x)$$

$$\operatorname{Li}_n(x) = -G(\underbrace{0, \dots, 0}, 1; x)$$

$$dJ = \varepsilon \tilde{\mathcal{A}}(x)J$$

 $dJ=arepsilon ilde{\mathcal{A}}(x)J$ with $ilde{\mathcal{A}}$ made up of $\mathrm{d}\log$ forms

 ε -expansion of J has GPLs as coefficients

Example: Four-Point Double Box

One kinematic scale
$$\,x=rac{s_{23}}{s_{12}}\,$$
 with 8 Master Integrals $\,I=\{I_1,\ldots,I_8\}\,$ in $d=4-2arepsilon\,$

With "good" basis J obtain ε -factorized differential equation

$$dJ = \varepsilon \left(\frac{dx}{x}A + \frac{dx}{1+x}B\right)J \qquad A, B \in \mathbb{Q}^{8\times8}$$

$$d\log(x) \qquad d\log(x+1)$$

$$J = \mathbb{P} \exp \left[\varepsilon \int \left(A \operatorname{dlog}(x) + B \operatorname{dlog}(x) \right) \right] J_0$$
 Solution given in Harmonic Polylogarithms \mathbf{C}

Some Properties of GPLs

- Satisfy shuffle Algebra $G(\vec{a};x)G(\vec{b};x) = \sum_{\vec{c} \in \vec{a} \sqcup \vec{b}} G(\vec{c};x)$
- The Symbol ~ rough approximate of GPL through argument of $d\log$ forms

Examples:
$$S(\log(x)) = x$$
 $S(\text{Li}_n(x)) = -\underbrace{x \otimes \ldots \otimes x}_{n-1} \otimes (1-x)$

Compatible with shuffle product: $S(I \cdot J) = S(I) \coprod S(J)$

Useful for simplification and finding identities

$$S(\text{Li}_2(x) + \text{Li}_2(1-x)) = -S(\log(x)\log(1-x))$$

$$\Rightarrow \operatorname{Li}_{2}(x) + \operatorname{Li}_{2}(1-x) + \log(x)\log(1-x) \sim 0$$

Constants with transcendental weight $\pi \sim 1$ $\varepsilon \sim 1$ $\zeta_{m_1...m_n} \sim \sum m_i$

Implementation

PolylogTools

Full identity requires ζ_2

Can be evaluated efficiently

Massaging into fast convergent region + series expansion

Fast implementations available (e.g. Ginac, handyG, FastGPL)

Beyond Polylogs

Fantastic Geometries

and where to find them

How do we identify geometry of integrals?

Maximal Cuts

Skeletonized version of integral Much simpler to extract geometry

Homogeneous solution to differential equation of full integral

$$\operatorname{MaxCut}(I) \sim \int \frac{\prod d\ell_j^{d_0}}{\prod_i D_i} / \{D_i \to \delta(D_i)\}$$

Reduces number of integrations

For polylogarithmic integrals: rational expression

al equation of full integral
$$\frac{\mathrm{d}^r}{\mathrm{d}x^r} + \sum_{i=0}^{r-1} c_r(x) \frac{\mathrm{d}^i}{\mathrm{d}x^i}$$

$$\frac{\mathrm{d}I}{\mathrm{d}x} = A(x)I \qquad \longrightarrow \qquad \mathcal{L}^{(r)}I_i = (\mathrm{inhom.})$$

Linear system

High order differential operator

Simplify via
$$(inhom.) = 0$$
 and $d = d_0$

For polylogarithmic integrals: Rationally factorizes

Elliptic Curves

Algebraic Curve:

Polynomial $f\in\mathbb{C}[y,z]$ $y,z\in\mathbb{C}$ such that f(y,z)=0

Simplest Example: Elliptic Curves

$$f(y,z) = y^2 - (z - a_1)(z - a_2)(z - a_3)(z - a_4) = 0$$

Genus 1

Modular Group and Forms

Two independent cycles γ_a and γ_b

One holomorphic form

Combination define periods of elliptic curve

$$\psi_1 = \int_{\gamma_a} \frac{\mathrm{d}x}{y} \qquad \psi_2 = \int_{\gamma_b} \frac{\mathrm{d}x}{y}$$

Periods span a lattice

Define ratio of periods $au = \frac{\psi_2}{\psi_1}$

Elliptic nome $q = e^{2\pi i \tau}$

Awesome expansion variable

Can always choose ausuch that $|q| \le 0.0043$

Modular group acts naturally on lattice

$$\tau' = \frac{a\tau + b}{c\tau + d} \iff \psi_1' = d\psi_1 + c\psi_2$$

$$\psi_2' = b\psi_1 + a\psi_2$$
 modular transformation
$$\hat{}$$
 Möbius transformation

new basis for lattice

Modular forms:

Functions that transform nicely under transformations

$$\eta_k \left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^k \eta_k(\tau)$$

k: modular weight

e.g.
$$\psi_1' = (c\tau + d)\psi_1$$

Elliptic Feynman Integrals

Simplest example: The Sunrise Integral

In d=2

$$\operatorname{MaxCut}(I) \propto \int \frac{\mathrm{d}u}{\sqrt{u(u-4)(u^2-2u(x+1)+(x-1)^2)}}$$

Maximal cut has algebraic obstruction: Not polylogarithmic

Root of quartic polynomial → elliptic curve

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{3x^2 - 20x + 9}{x(x-1)(x-9)}\frac{\mathrm{d}}{\mathrm{d}x^1} + \frac{x-3}{x(x-1)(x-9)}\right] \operatorname{MaxCut}(I) = 0$$

Equivalently, differential operator does not factorize

Identify maximal cut with elliptic integrals

$$\operatorname{MaxCut}(I)|_{\gamma_1} \propto \operatorname{K}(k)$$

$$\text{MaxCut}(I)|_{\gamma_2} \propto i \text{K}(1-k)$$

$$dI = \varepsilon \begin{pmatrix} 0 & 0 & 0 \\ 0 & \eta_2 & 1 \\ \eta_3 & \eta_4 & \eta_2 \end{pmatrix} I$$

Kernels are modular forms

Sunrise as iterated integrals of modular forms
Super fast converging expansion in q

Elliptic Polylogs

Several generalizations of polylogs possible on elliptic curves

$$\widetilde{\Gamma}\left(\begin{smallmatrix} n_1 & \dots & n_r \\ c_1 & \dots & c_r \end{smallmatrix}; z; \tau\right) \qquad \mathcal{E}_4\left(\begin{smallmatrix} n_1 & \dots & n_r \\ c_1 & \dots & c_r \end{smallmatrix}; z\right) \\
= \operatorname{ELi}_{n_1 \dots n_l; m_1, \dots m_l; 2o_1, \dots 2o_{l-1}}(x_1, \dots, x_l; y_1 \dots y_l; q) \\
= \operatorname{E}_4\left(\begin{smallmatrix} n_1 & \dots & n_r \\ c_1 & \dots & c_r \end{smallmatrix}; z\right) \\
= \Gamma\left(\begin{smallmatrix} n_1 & \dots & n_r \\ a_1 & \dots & a_r \end{smallmatrix}; z\right)$$

Nice function classes with special properties (e.g. closure under integration, as for GPLs)

Expressing results in these functions is not trivial (need to transform factorized DEQ to specific kernels)

Beyond Elliptics

How do we generalize from elliptic integrals?

Elliptic Feynman integrals are phenomenological state of the art **What else is there?**

Calabi-Yau Feynman Integrals

An Outlook

Plenty of Calabi—Yau integrals known
Beyond one kinematic scale currently infeasible

String and mathematics literature extremely helpful Mirror symmetry provides mirror map

Defines τ and q, similar to elliptic case

For equal-mass Banana Integral series expansions in q

Frontier: Multi-scale Banana Integrals

Simplest Example:

Banana Integrals

 ℓ -loop Banana integral

 $(\ell-1)$ -fold Calabi–Yau

Other examples:

$$n=3$$

n =dimension of manifold

Conclusions

- Feynman integrals span zoo of special functions
 - At 1-loop just Logs and Dilogs
 - Already at 2-loop, elliptic, higher-genus, and Calabi Yaus appear
 - Size of the zoo unknown
- Polylogs well understood class
- Elliptics feasible, but still technically challenging
- In odd dimensions significantly less explored (at least from QCD side)
 - However, much of the technology should carry over to d=3