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Outline

1) Perturbative bootstrap methods

= (a historical) motivation and introduction
= bootstrap calculations at large particle multiplicities and high loop orders
= distilling key lessons from these bootstrap calculations

2) The analytic properties of polylogarithmic Feynman integrals

= singular points and how to characterize them
= algebraic versus logarithmic branch cuts
= building single-valued functions

3) Hermeneutical lessons from amplitude calculations



The Integration Bottleneck

o The technology for reducing the computation of scattering amplitudes (and related
quantities) to the evaluation of a small basis of master integrals has advanced
enormously in recent years

o Even so, our ability to evaluate these integrals analytically remains limited
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o Perturbative bootstrap methods ask the following question:

Do we know enough about the mathematical properties of amplitudes
(or similar quantities) to avoid integration and construct them directly?




The Surprising Simplicity of Amplitudes

This is a natural question to ask—despite their computational difficulty, amplitudes are
often found to evaluate to strikingly simple expressions

o The paradigmatic (loop-level) example is given by the first two-loop six-particle
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This is a natural question to ask—despite their computational difficulty, amplitudes are
often found to evaluate to strikingly simple expressions

(once the right theoretical language is found)

o The paradigmatic (loop-level) example is given by the first two-loop six-particle
amplitude calculated in planar A = 4 supersymmetric Yang-Mills theory
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Analytic Properties
Several striking features were made clear in this example by the simplified formula:

o the special functions that appear are all drawn from a highly restricted class of
generalized polylogarithms (or, iterated integrals over the punctured Riemann sphere)
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where the integration endpoint ¢ and punctures
c; € {0,1,05,...} are algebraic functions of Mandelstam
variables

o logarithmic branch points only appear at nine locations

o each term also involves precisely four logarithmic integrals
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Starting from the conjecture that the L-loop amplitude ‘lives’ in this space, we can try to
bootstrap it directly by looking for a function that exhibits all the expected properties

bootstrap results

[Del Duca, Duhr, Smirnov (2009)] [Dixon, Drummond, Henn (2011)] [Dixon, Drummond, von Hippel, Pennington (2013)] [Dixon, Drummond,
MHV Duhr, Pennington (2014)] [Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

[Dixon, Drummond, Henn (2012)] [Dixon, von Hippel (2014)] [Dixon, von Hippel, AJM (2015)]
NH MV [Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

o each of these results is unique, and satisfies a number of nontrivial cross-checks

o thus, for the six-particle amplitude, we can bypass integration altogether



Successful Bootstrap Examples

The same methods have been successfully now to many examples

seven-particle amplitude ... all-multiplicity amplitudes special classes of integrals
4 loops . 2 loops oo loops
[Dixon, Drummond, Harrington, AJM, [Caron-Huot (2011)] [Caron-Huot, Dixon, von Hippel,
Papathanasiou, Spradlin (2016)] [Drummond, [He, Li, Zhang (2020)] AJM, Papathanasiou (2018)]

Foster, Giirdogan, Papathanasiou (2018)]

o Takeaway: once we learn the right theoretical language in which to formulate
perturbative quantities in QFT, rapid progress can be made



Technology for Multiple Polylogarithms

Having applied bootstrap methods at such high loop orders, we have extremely
well-developed technology for working with functions such as multiple polylogarithms

o As an illustration, the ‘simplest’ quantities that have been bootstrapped are
supersymmetric three-particle form factors

8 loops

[Dixon, Giirdogan, AJM, Wilhelm (2022)]
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o However, even these form factors become highly nontrivial at high loop orders
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Building Special Functions

We can only work with such large functions because we directly build them to have the
properties we want

o respect the symmetries of the problem
o expected behavior in special kinematic limits

o logarithmic and algebraic branch cuts that start in physical locations

There has in particular been a resurgence of interest—and progress—
in understanding the analytic properties of scattering amplitudes

o Even in single-valued functions—in which all branch cuts cancel—a great deal of
information is encoded in the analytic structure
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Landau Analysis

The body of techniques that have developed for studying the analytic structure of Feynman
integrals is often referred to as Landau analysis. It address questions such as:

o where in the space of masses and external momenta Feynman integrals can become
singular and develop branch cuts

o how Feynman integrals behave near these singular surfaces (for instance, do they
develop a pole, an algebraic branch cut, or a logarithmic branch cut)

o where specific singularities can appear within iterated integral representations

o what sequences of discontinuities are consistent with causality



The General Idea

All of the interesting analytic structure that appears in Feynman integrals can be traced back
to singularities that occur along the contour of integration

o For instance, if we are interested in studying a function
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where g(x, z) and h(x,z) = (z — z{(z)) -+ (2 — 2/ (x)) are polynomials, we can learn a
lot from how the points {z;(x)} interact with the contour - as we vary z
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The Bubble

To see how this technology can be used in practice, let's look at the bubble diagram in two
and three dimensions:

o By solving the Landau equations, we can identify all the kinematic surfaces where
interesting analytic structure can appear:

{mi=0, mi=0, p*=(mi+mo)=ry, p*=0}
o We can also show that certain (sequences of) discontinuities are not allowed
Disc,o—, (I) =0

Discm%ZO(Discmgzo(I)) = Discmgzo(Discm%ZO(I)) =0



The Bubble

o Finally, we can predict how the bubble will behave near each of these singular points
(using for instance the method of regions seen in Andrea’s talk)
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o Finally, we can predict how the bubble will behave near each of these singular points
(using for instance the method of regions seen in Andrea’s talk)
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These constraints uniquely determine the functional form of the bubble integral:

1 VP2 =T+ P2 e
IQD ~ log
VP =P —re T\ VPR - =P -
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Single-Valued Functions

Even in functions in single-valued functions in which all the branch cuts have been hidden, a
lot of information can be learned from these techniques

o although these branch cuts have been hidden, the locations and nature of these singular
points still control the behavior of this function

o the mechanism for ‘hiding’ different types of branch cuts are rather different

= logarithmic branch cuts can be hidden by adding non-holomorphic contributions
1
log(z) — §<log(:v) + log(m*)>
= square root branch cuts can be hidden by imposing a Galois symmetry

fla) L2 )



Single-Valued Functions

In particular, the locations of where interesting things are happening in the 3D bubble and
triangle integrals are dictated by the values of the masses
o the bubble exhibits logarithmic behavior near

p* = (my £+ ma)?

o the triangle integral exhibits square-root-type behavior where
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In particular, the locations of where interesting things are happening in the 3D bubble and
triangle integrals are dictated by the values of the masses
o the bubble exhibits logarithmic behavior near

p* = (my £+ ma)?

o the triangle integral exhibits square-root-type behavior where

V%
1=yl — Y53 — Yis — 2y12 %23 Y13 =0 2 o
where s
“_(Pz'*‘pj)z—m?—m? - D3
yl] Qmimj D1

Does anything identifiably special happen at these points (in terms of cosmology) in the basis
of integrals that have been used to evaluate the bispectrum of galaxies using the EFTofLSS?
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Conclusions

A great deal of mathematical and physical structure is hidden in many of the quantities
we are interested in computing in perturbative QFT
o If this structure can be understood, it can sometimes be leveraged to develop highly
efficient computational techniques
o One key to uncovering this structure is to identify the right theoretical language, or
special functions, with which to work—and to try to build some of the known properties
of the result into these functions directly

Thanks!
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