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Outline

1) Perturbative bootstrap methods

) (a historical) motivation and introduction

) bootstrap calculations at large particle multiplicities and high loop orders

) distilling key lessons from these bootstrap calculations

2) The analytic properties of polylogarithmic Feynman integrals

) singular points and how to characterize them

) algebraic versus logarithmic branch cuts

) building single-valued functions

3) Hermeneutical lessons from amplitude calculations
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Conclusion

The Integration Bottleneck

� The technology for reducing the computation of scattering amplitudes (and related
quantities) to the evaluation of a small basis of master integrals has advanced
enormously in recent years

� Even so, our ability to evaluate these integrals analytically remains limited

[Henn, Peraro, Xu, Zhang (2022)] [Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia (2023)]

[Badger, Becchetti, Chaubey, Marzucca (2023)] [Henn, Lim, Bobadilla (2023)]

� Perturbative bootstrap methods ask the following question:

Do we know enough about the mathematical properties of amplitudes
(or similar quantities) to avoid integration and construct them directly?



Andrew McLeod

Conclusion

The Integration Bottleneck

� The technology for reducing the computation of scattering amplitudes (and related
quantities) to the evaluation of a small basis of master integrals has advanced
enormously in recent years

� Even so, our ability to evaluate these integrals analytically remains limited

[Henn, Peraro, Xu, Zhang (2022)] [Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia (2023)]

[Badger, Becchetti, Chaubey, Marzucca (2023)] [Henn, Lim, Bobadilla (2023)]

� Perturbative bootstrap methods ask the following question:

Do we know enough about the mathematical properties of amplitudes
(or similar quantities) to avoid integration and construct them directly?



Andrew McLeod

Conclusion

The Surprising Simplicity of Amplitudes

This is a natural question to ask—despite their computational di�culty, amplitudes are
often found to evaluate to strikingly simple expressions

(once the right theoretical language is found)

� The paradigmatic (loop-level) example is given by the first two-loop six-particle

amplitude calculated in planar N = 4 supersymmetric Yang-Mills theory

+ · · · + )

first computed as a 17 page expression, later simplified to a two-line expression
[Del Duca, Duhr, Smirnov (2009)] [Goncharov, Spradlin, Vergu, Volovich (2010)]
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first computed as a 17 page expression

, later simplified to a two-line expression

[Del Duca, Duhr, Smirnov (2009)]

[Goncharov, Spradlin, Vergu, Volovich (2010)]
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Classical Polylogarithms for Amplitudes and Wilson Loops

A. B. Goncharov,1 M. Spradlin,2 C. Vergu,2 and A. Volovich2
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively di�cult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L � 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic e�ort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56

s234s123
, u3 =

s34s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 � 1 ±

�
�

2u1u2u3
, (2)

where � = (u1 + u2 + u3 � 1)2 � 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3X

i=1

�
L4(x

+
i , x�

i ) � 1

2
Li4(1 � 1/ui)

�

� 1

8

 
3X

i=1

Li2(1 � 1/ui)

!2

+
1

24
J4 +

�2

12
J2 +

�4

72
. (3)

Here we use the functions

L4(x
+, x�) =

1

8!!
log(x+x�)4

+
3X

m=0

(�1)m

(2m)!!
log(x+x�)m(�4�m(x+) + �4�m(x�)) (4)

+ · · · + )

first computed as a 17 page expression, later simplified to a two-line expression
[Del Duca, Duhr, Smirnov (2009)] [Goncharov, Spradlin, Vergu, Volovich (2010)]
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Conclusion

The Surprising Simplicity of Amplitudes

This is a natural question to ask—despite their computational di�culty, amplitudes are
often found to evaluate to strikingly simple expressions

(once the right theoretical language is found)

� The paradigmatic (loop-level) example is given by the first two-loop six-particle

amplitude calculated in planar N = 4 supersymmetric Yang-Mills theory
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Classical Polylogarithms for Amplitudes and Wilson Loops

A. B. Goncharov,1 M. Spradlin,2 C. Vergu,2 and A. Volovich2

1Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912, USA
2Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912, USA

We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively di�cult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L � 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic e�ort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56

s234s123
, u3 =

s34s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 � 1 ±

�
�

2u1u2u3
, (2)

where � = (u1 + u2 + u3 � 1)2 � 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3X

i=1

�
L4(x

+
i , x�

i ) � 1

2
Li4(1 � 1/ui)

�

� 1

8

 
3X

i=1

Li2(1 � 1/ui)

!2

+
1

24
J4 +

�2

12
J2 +

�4

72
. (3)

Here we use the functions

L4(x
+, x�) =

1

8!!
log(x+x�)4

+
3X

m=0

(�1)m

(2m)!!
log(x+x�)m(�4�m(x+) + �4�m(x�)) (4)

+ · · · + )

first computed as a 17 page expression, later simplified to a two-line expression
[Del Duca, Duhr, Smirnov (2009)] [Goncharov, Spradlin, Vergu, Volovich (2010)]
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Conclusion

Analytic Properties

Several striking features were made clear in this example by the simplified formula:

� the special functions that appear are all drawn from a highly restricted class of
generalized polylogarithms (or, iterated integrals over the punctured Riemann sphere)

Z t

0

dt1
t1 � c1

Z t1

0

dt2
t2 � c2

Z t2

0

dt3
t3 � c3

Z
· · ·

where the integration endpoint t and punctures
ci 2 {0, 1, �3, . . .} are algebraic functions of Mandelstam
variables

� logarithmic branch points only appear at nine locations

� each term also involves precisely four logarithmic integrals

� each term also involves precisely���four logarithmic integrals
2L

10
1

�4

�3

t

• • •

•

•

Could the amplitude exhibit these same properties at higher loop orders?
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Conclusion

Bootstrap Methods

Starting from the conjecture that the L-loop amplitude ‘lives’ in this space, we can try to
bootstrap it directly by looking for a function that exhibits all the expected properties
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. . .

. . .

bootstrap results

MHV
[Del Duca, Duhr, Smirnov (2009)] [Dixon, Drummond, Henn (2011)] [Dixon, Drummond, von Hippel, Pennington (2013)] [Dixon, Drummond,

Duhr, Pennington (2014)] [Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

NHMV
[Dixon, Drummond, Henn (2012)] [Dixon, von Hippel (2014)] [Dixon, von Hippel, AJM (2015)]

[Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

� each of these results is unique, and satisfies a number of nontrivial cross-checks

� thus, for the six-particle amplitude, we can bypass integration altogether
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Conclusion

Successful Bootstrap Examples

The same methods have been successfully now to many examples

seven-particle amplitude . . . all-multiplicity amplitudes special classes of integrals

. . .

4 loops . . . 2 loops 1 loops
[Dixon, Drummond, Harrington, AJM, [Caron-Huot (2011)] [Caron-Huot, Dixon, von Hippel,

Papathanasiou, Spradlin (2016)] [Drummond, [He, Li, Zhang (2020)] AJM, Papathanasiou (2018)]

Foster, Gürdoğan, Papathanasiou (2018)]

� Takeaway: once we learn the right theoretical language in which to formulate
perturbative quantities in QFT, rapid progress can be made
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Conclusion

Technology for Multiple Polylogarithms

Having applied bootstrap methods at such high loop orders, we have extremely
well-developed technology for working with functions such as multiple polylogarithms

� As an illustration, the ‘simplest’ quantities that have been bootstrapped are
supersymmetric three-particle form factors

8 loops
[Dixon, Gürdoğan, AJM, Wilhelm (2022)]

8 loops
[Dixon, Gürdoğan, AJM, Wilhelm (2022)]

) 1,671,656,292 “words”

⇠ 2800 ⇥

� However, even these form factors become highly nontrivial at high loop orders
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Conclusion

Building Special Functions

We can only work with such large functions because we directly build them to have the

properties we want

� respect the symmetries of the problem

� expected behavior in special kinematic limits

� logarithmic and algebraic branch cuts that start in physical locations

There has in particular been a resurgence of interest—and progress—
in understanding the analytic properties of scattering amplitudes

� Even in single-valued functions—in which all branch cuts cancel—a great deal of

information is encoded in the analytic structure
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Conclusion

Landau Analysis

The body of techniques that have developed for studying the analytic structure of Feynman
integrals is often referred to as Landau analysis.

It address questions such as:

� where in the space of masses and external momenta Feynman integrals can become
singular and develop branch cuts

� how Feynman integrals behave near these singular surfaces (for instance, do they
develop a pole, an algebraic branch cut, or a logarithmic branch cut)

� where specific singularities can appear within iterated integral representations

� what sequences of discontinuities are consistent with causality
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Conclusion

The General Idea

All of the interesting analytic structure that appears in Feynman integrals can be traced back
to singularities that occur along the contour of integration

� For instance, if we are interested in studying a function

f(x) =

Z

�
dz

g(x, z)

h(x, z)

where g(x, z) and h(x, z) = (z � z⇤1(x)) · · · (z � z⇤n(x)) are polynomials, we can learn a
lot from how the points {zi(x)} interact with the contour � as we vary x

z

�

•

•

•
z⇤
3(x)

•
z⇤
2(x)

•
z⇤
4(x)

•
z⇤
1(x)
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Conclusion

The Bubble

To see how this technology can be used in practice, let’s look at the bubble diagram in two
and three dimensions:

m1

m2

p

� By solving the Landau equations, we can identify all the kinematic surfaces where
interesting analytic structure can appear:

{m2
1 = 0, m2

2 = 0, p2 = (m1 ± m2)
2 = r±, p2 = 0}

� We can also show that certain (sequences of) discontinuities are not allowed

Discp2=r�(I) = 0

Discm2
1=0

�
Discm2

2=0(I)
�

= Discm2
2=0

�
Discm2

1=0(I)
�

= 0
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Conclusion

The Bubble

� Finally, we can predict how the bubble will behave near each of these singular points
(using for instance the method of regions seen in Andrea’s talk)

I(m2
i ! 0) ⇠

(
log m2

i in D = 2
p

m2
i in D = 3

I(p2 ! 0) ⇠
(
absent in D = 2

1/
p

p2 in D = 3

I(p2 ! (m1 ± m2)2) ⇠
(

1/
p

p2�r± in D = 2

log
�
p2 � r±

�
in D = 3

These constraints uniquely determine the functional form of the bubble integral:

I2D ⇠ 1p
p2 � r+

p
p2 � r�

log

 p
p2 � r+ +

p
p2 � r�p

p2 � r+ �
p

p2 � r�

!

I3D ⇠ 1p
p2

log

 p
m2

1 +
p

m2
2 +

p
p2

p
m2

1 +
p

m2
2 �

p
p2

!
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Conclusion

Single-Valued Functions

Even in functions in single-valued functions in which all the branch cuts have been hidden, a
lot of information can be learned from these techniques

� although these branch cuts have been hidden, the locations and nature of these singular
points still control the behavior of this function

� the mechanism for ‘hiding’ di↵erent types of branch cuts are rather di↵erent

) logarithmic branch cuts can be hidden by adding non-holomorphic contributions

log(x) ! 1

2

⇣
log(x) + log(x⇤)

⌘

) square root branch cuts can be hidden by imposing a Galois symmetry

f(x)
p
• ! �

p
•�������! f(x)
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Conclusion

Single-Valued Functions

In particular, the locations of where interesting things are happening in the 3D bubble and
triangle integrals are dictated by the values of the masses

� the bubble exhibits logarithmic behavior near

p2 = (m1 ± m2)
2

� the triangle integral exhibits square-root-type behavior where

1 � y2
12 � y2

23 � y2
13 � 2y12 y23 y13 = 0

where

yij =
(pi + pj)2 � m2

i � m2
j

2mimj

p2

p1

m3

m1

m2

p3

Does anything identifiably special happen at these points (in terms of cosmology) in the basis
of integrals that have been used to evaluate the bispectrum of galaxies using the EFTofLSS?
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Conclusions

A great deal of mathematical and physical structure is hidden in many of the quantities
we are interested in computing in perturbative QFT

� If this structure can be understood, it can sometimes be leveraged to develop highly

e�cient computational techniques

� One key to uncovering this structure is to identify the right theoretical language, or
special functions, with which to work—and to try to build some of the known properties
of the result into these functions directly

Thanks!
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