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Ordinary (O(n) model) loop

Defect loop (line)

where the over/under crossings are defined by

The defect operator is diagonal in each ⇤r,s

The defect operator does not commute with ordinary crossings

[D, /\] 6= 0

Topological symmetry is what preserves the flow towards the dense fixed point

As far as symmetries are concerned:
- There exists currents in the adjoint with conformal weights (1, 0) and (0, 1)
- These currents are however non chiral, and satisfy OPEs involving both z and z̄
- The model is not WZW
- The grouping of O(n) representations does not follow from any known
“algebraic extension” of O(n)

Other than this, we are still working on refinements of major works such as

There are interesting topological symmetries arising from the non-crossing condition

Feigin Fuchs, Kac
Belavin, Polyakov, Zamolodchikov

H =
M

O(n)⌦ (Vir,Vir)

We want to know how to write

This can be extracted from the trace Z = Tr H qL0�c/24q̄L̄0�c/24

Using conformal mappings, this trace can be re-expressed as the
torus partition function

Using this kind of property is the essence of the BPZ strategy to determine
four-point functions and solve the theory

In the O(n) CFT a (very) few four-point functions (essentially, the energy) can
indeed be determined this way

The theory being non-unitary, the Virasoro norm is not positive definite and
there are (infinitely many) null states which are not vanishing

For all the other �rs in the theory (r, s integer, r > 1) the null descendents are indeed non zero

and involved in rank two Jordan blocks
(
)

Top and bottom fields have h = h̄ = hr,�s = hr,s + rs

Exact expressions for the Er,s and ⇤(r,s) are now known

Why is is important?

Relevant Virasoro representation theory is ... wild!

de Gennes
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Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)

and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

X

{✏}

(✏i1✏i2)(✏i3✏i4) . . . (✏i2m�1✏i2m) =

8
>><

>>:

2N2
if {⇥} consists of only loops

0 otherwise

(1.11)

for the following reason. If the bonds in {⇥} do not form only loops, then the sum

will have the same number of +1 terms as �1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {⇥} form a loop (figure 1.2), then the indices

of the spins may be arranged so that ✏i2 = ✏i3 , ✏i4 = ✏i5 , etc., and ✏i2m = ✏i1 . With

this rearrangement, we see that each term in the sum is one, so with |{✏}| = 2N2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {⇥} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N2
cosh2N2

(K/2)
X

{⇤}

x�, x := tanh(K/2), (1.12)

where {⇤} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {⇤}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order
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Loop soups
Loop soups

(ensembles of self-avoiding mutually avoiding loops

with fugacities per loop and bond)

• Are standard to many problems of statistical physics (O(n) model, Q-state

Potts model, disordered free electrons models (plateau transitions)...)

• Are a big thing in probability theory (W. Werner, S. Smirnov, H. Dominil

Copin)

While many properties (like critical exponents) have been known for decades,

first “phenomenologically” (Coulomb gas constructions, Bethe-ansatz) then rig-

orously (SLE)
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Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently
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a bit of (field theoretic) context….    The O(n)  model

= |z13|�2h1/2,0 |z24|�2h1/2,0G(z, z̄)

G =
X

�,�̄2S

A�,�̄F�(z)F �̄(z̄)

G[] = F1 +
1

n
(F2 + F3)

G[2] =
1

2
(F2 + F3)

G[11] =
1

2
(�F2 + F3) (12)

Three O(n) channels

[1]⌦ [1] = []� [11]� [2]

Yet, operators with arbitrarily
large (even) number of legs
appear in OPE

Three basic diagrams

Conformal loop ensemble

The case n = 0

Recent and ongoing work by

1
l

z = l
2

1+l2

F2(z) = F2(1� z)

F1(z) = F3(1� z)

O(n) Landau-Ginzburg model in 2D
escapes the Mermin-Wagner theorem
second-order phase transition with spontaneous symmetry breaking for n < 2
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CP
m−1 model in Refs. [33,34]. The coupling constants

are g2
σ, the usual sigma model coupling (there is only one

such coupling, because the target supermanifold is a su-
persymmetric space, and hence the metric on the target
space is unique up to a constant factor), and θ, the co-
efficient of the topological term, so θ is defined modulo
2π.

First we note a well-known important point about the
supersymmetric models: the physics is the same for all
n, in the following sense. For example, in the present
model, correlation functions of operators that are local
functions (possibly including derivatives) of components
a ≤ n1 + m, α ≤ n1, exist for n = n1, say, and are equal
to those of the same operators for any other value n > n1,
due to cancellation of the “unused” even and odd index
values. This can be seen in perturbation theory because
the “unused” index values appear only in summations
in closed loops, and their contributions cancel, but is
also true nonperturbatively (it can be shown in the lat-
tice constructions we discuss below). In particular, the
renormalization group (RG) flow of the coupling g2

σ is the
same as for n = 0, a non-supersymmetric sigma model.
For the case of CP

n+m−1|n, the perturbative beta func-
tion is the same as for CP

m−1, namely (we will not be
precise about the normalization of g2

σ)

dg2
σ

dl
= β(g2

σ) = mg4
σ + O(g6

σ) (1.3)

where l = lnL, the logarithm of the length scale at which
the coupling is defined [see e.g. Ref. [35], eq. (3.4)]. (The
beta function for θ is zero in perturbation theory, and
that for g2

σ is independent of θ.) For m > 0, if the cou-
pling is weak at short length scales, then it flows to larger
values at larger length scales. For θ "= π (mod 2π), the
coupling becomes large, the U(n + m|n) symmetry is re-
stored, and the theory is massive. However, a transition
is expected at θ = π (mod 2π). For m > 2, this transi-
tion is believed to be first order, while it is second order
for m ≤ 2 [36]. In the latter case, the system with θ = π
flows to a conformally-invariant fixed-point theory. At
the fixed point, a change in θ is a relevant perturbation
that makes the theory massive. Our exact results de-
scribe these critical theories for m ≤ 2.

For m = 2, the RG flow is the same as for the famil-
iar O(3) sigma model. For n = 0, the θ = π critical
theory is the SU(2) level 1 Wess-Zumino-Witten (WZW)
model [37]. For n > 0, a supersymmetric extension of
this familiar system is obtained. For m = 1, we argue
that the critical theory is related to the critical CFT of
percolation.

For m = 0, the beta function is exactly zero (see Sec.
II A), and the sigma model exhibits a line of fixed points,
with continuously-varying scaling dimensions for general
n > 1. We argue that these dimensions do not depend
on θ. We find an exact description of the spectrum in
one theory with the same symmetry, and argue that it

represents one special value of the coupling g2
σ. This the-

ory describes “dense polymers” (there are also variant
dense polymer theories with OSp(2n|2n) supersymme-
try). These points will be discussed further in Sec. II A;
an important role is played by the fact that for n = 1, this
theory is just non-interacting massless scalar fermions
(with central charge c = −2). This case has similar-
ities with the sigma model with a supergroup manifold
SL(n|n)/GL(1) as target space in Ref. [31,32] (for a care-
ful discussion of the target manifold, see Ref. [27]).

The other nonlinear sigma model has target space
S2n+m−1|2n; it is a supersymmetric extension of the usual
O(m)-vector model. As coordinates, we use a real scalar
field,

φ ≡ (φ1, . . . ,φ2n+m,ψ1, . . . ,ψ2n),

(the 2n+m components φa are commuting, the remaining
2n components ψα are anticommuting), and

φ · φ′ =
∑

a

φaφ
′
a +

∑

α

Jαβψαψ
′
β (1.4)

is the osp(2n + m|2n)-invariant bilinear form [Jαβ is a
nondegenerate symplectic form, for which we can take the

standard form, consisting of diagonal blocks

(

0 1
−1 0

)

].

In the nonlinear sigma model, the fields are restricted to
obey the constraint

φ · φ = 1, (1.5)

which defines the unit supersphere, S2n+m−1|2n. The
Lagrangian density of the sigma model is

L =
1

2g2
σ

∂µφ · ∂µφ. (1.6)

The perturbative beta function for the coupling g2
σ in this

model is (again, it is independent of n to all orders)

β(g2
σ) = (m − 2)g4

σ + O(g6
σ). (1.7)

For m > 2, the RG flow is towards strong coupling at
large length scales, and it is expected that the symmetry
is restored, and no transition occurs (for n = 0, m ≥ 2,
a broken symmetry phase is not allowed in 2D, and no
phase with power-law correlations is known in this model
for n = 0, m > 2). For m < 2, zero coupling is an
attractive fixed point, and one then expects a transition
to separate this regime from strong coupling. Our exact
results describe this critical point. In the case m = 1,
n = 0, it is best to use a lattice version of the model, as
will be described in Sec. II, and then this is simply the
2D Ising phase transition. For m = 0, this critical point
is used to describe dilute polymers (self-avoiding walks).

For m = 2, the theory is more interesting, as the per-
turbative beta function for g2

σ vanishes to all orders, sim-
ilar to the case of the CP

n−1|n model. For the action

2
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LG universality class is discrete SQ symmetry

Second order phase transition for Q  4

Lattice discretization:
Q = 1: percolation
Dense loop gas
Related with the XXZ spin chain
(And also CP

m�1, m =
p
Q, ✓ = ⇡)

By duality it is (almost) the same as a dense loop gas
(�.� = 1)
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LG universality class is discrete SQ symmetry

Second order phase transition for Q  4

Lattice discretization:
Q = 1: percolation
Dense loop gas
Related with the XXZ spin chain
(And also CP

m�1, m =
p
Q, ✓ = ⇡)

By duality it is (almost) the same as a dense loop gas
(�.� = 1)
Properties like central charge and (some) critical exponents
have been known for a long time
(and well studied in the boundary case using SLE)
(associated in particular with the [2r] representations)
(pretty much r and s are flipped compared with O(n))
Applications in probability theory

• Schur-Weyl duality in this case is between SQ acting in the tensor product

of the Q-dimensional representation and the Partition Algebra

n = 1 is Ising (discrete symmetry)

8

|n⇤
| ⇡ 0.6180

A(5/2,2/5)N

leading to a finite four-point function with more logarithmic terms

2D CFTs with continuous symmetries are usually described by
Wess Zumino Witten (WZW) models

Charges Qa give rise to a pair of chiral and antichiral local currents Ja, J̄a

with Kac-Moody algebra commutations

⇥
Ja
n , J

b
m

⇤
= fab

c Jc +
1

2
kn�ab�m+n

where k is a (usually quantized) anomaly (level)

These theories are fully solvable, but not very relevant to condensed matter physics

where one typically wants instead continuations such as O(n), n ! 0 etc

(of courses WZW models on supergroups can also be studied such as OSp(2, 2),
but these are not particularly relevant either)

O(n) Landau-Ginzburg model in 2D
escapes the Mermin-Wagner theorem
:
has second-order phase transition for n < 2

Alternatively the NL�M
flows to weak coupling for n < 2
and admits a critical point

�(g2�) = (n� 2)g4� +O(g6�)
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• From [1]⌦2 = []� [11]� [2] we get the tensor structure

• It can be reinterpreted in terms of diagrams

with

• We’ll use the bootstrap approach

Expand the four point function onto conformal blocks

D
:

• The spectrum is a priori very rich

S =
�
(r, s)N ; r 2 N⇤/2, s 2 Z/r

 
[ {h1, 1 + 2NiD}

The non diagonal part has

s values dense on the axis

The fact that �D
(1,3) is truly degenerate means the fusion rule

�13�rs = �r,s+2 + �rs + �r,s�2

is obeyed for all r, s
A relationship between amplitudes A(r,s+1)N and A(r,s�1)N (and Ah1,s+1iD and Ah1,s�1iD ) follows

simplifying the bootstrap, somewhat

(for
DQ4

i=1 V(ri,si)

E
)

A(r,s+1)N

A(r,s�1)N
= (�)2r2+2r4+1

Y

✏,⌘=±
�
�
✏s��2 + ⌘r

��✏
�
� 1�⌘

2 + (✏s+ ⌘)��2
� r

��✏

⇥
M(Prs, P1, P2)

M(Pr,�s, P̄1, P̄2)

M(Pr,s, P3, P4)

M(Pr,�s, P̄3, P̄4)
, (2)

⇢
Pi = Pri,si

P̄i = Pri,�si
, M(P1, P2, P3) =

Y

±,±
�
�
1
2 � ��1P1 ± ��1P2 ± ��1P3

�
. (3)

�2 =
x+ 1

x

Prs =
[(x+ 1)r � xs]2

4x(x+ 1)

Only the A(r,s)N for s 2 [0, 2) have to be determined.
The sums over s mod 2 of amplitudes are interpreted as interchiral blocks

E.g.

where
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Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)

and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

X
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for the following reason. If the bonds in {⇥} do not form only loops, then the sum

will have the same number of +1 terms as �1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {⇥} form a loop (figure 1.2), then the indices

of the spins may be arranged so that ✏i2 = ✏i3 , ✏i4 = ✏i5 , etc., and ✏i2m = ✏i1 . With

this rearrangement, we see that each term in the sum is one, so with |{✏}| = 2N2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {⇥} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N2
cosh2N2

(K/2)
X

{⇤}

x�, x := tanh(K/2), (1.12)

where {⇤} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {⇤}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order
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Z =
X

dilute loop gas

K
B
c n

L

Z =
X

clusters

(eKc � 1)BQC

=
X

dense loop gas

p
Q

L

(1)

n-component vectors ~Si with O(n) symmetric ~Si.
~Sj coupling

Discrete spins � = 1, . . . , Q with SQ invariant ��i�j coupling
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|n⇤
| ⇡ 0.6180

A(5/2,2/5)N

leading to a finite four-point function with more logarithmic terms

2D CFTs with continuous symmetries are usually described by
Wess Zumino Witten (WZW) models

Charges Qa give rise to a pair of chiral and antichiral local currents Ja, J̄a

with Kac-Moody algebra commutations

⇥
Ja
n , J

b
m

⇤
= fab

c Jc +
1

2
kn�ab�m+n

where k is a (usually quantized) anomaly (level)

These theories are fully solvable, but not very relevant to condensed matter physics

where one typically wants instead continuations such as O(n), n ! 0 etc

(of courses WZW models on supergroups can also be studied such as OSp(2, 2),
but these are not particularly relevant either)

O(n) Landau-Ginzburg model in 2D
escapes the Mermin-Wagner theorem
:
has second-order phase transition for n < 2

Alternatively the NL�M
flows to weak coupling for n < 2
and admits a critical point

�(g2�) = (n� 2)g4� +O(g6�)

No “top-down” strategy (it is not a WZW!) - hence:

This means that a few four-point functions can still be determined using the BPZ strategy

But not these are the exception, not the rule

• We’ll use the bootstrap approach
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Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C
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which implies the general fusion rules

�21�rs = �r+1,s + �r�1,s (6)

A relationship follows between the amplitudes
e.g. for non-diagonal fields

A(r+1,s)

A(r,s)
=

�(�s� r

�2 )�(1 + s� 1+r

�2 )�( 1�s

2 + r

2�2 )�(
1+s

2 + r

2�2 )�(
1�s

2 + 1+r

2�2 )�(
1+s

2 + 1+r

2�2 )
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�2 )�(1� s+ r

�2 )�(
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2�2 )�(
1�s
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2�2 )�(
1+s

2 � r

2�2 )�(
1�s
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2�2 )
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�
2 =

x

x+ 1
(8)

Writing
we only need to determine the amplitudes for (r, s) where r 2 [0, 1].
The summation over r modulo 1 leads to interchiral blocks

G =
X

r2Q\[0,1],s2N;rs2N
A(r,s)F(r,s) (9)

While �12 is non-degenerate (the theory is not Liouville at c < 1),
there are strong indications of a full integrability
as the amplitudes are found to satisfy remarkable properties
Liouville amplitudes
Numerically determined coe�cient
The CFT is generically (i.e. for x generic) logarithmic with Jordan cells of rank two
Whenever x is rational, more complex logarithmic features develop
Interestingly, the complexity of the spectrum is, at least in part, necessary for
the theory to keep making sense at these points
For instance
a divergence then appears in the blocks
a degenerate weight
Four-point functions remain finite because, when Q ! Q

⇤

and the corresponding amplitude turns out to have a divergence
Q

⇤ ⇡ 0.5858
A 1

4 ,4

The corresponding four-point function in the diagonal CFT has a geometrical
interpretation similar to but di↵erent from the Potts model

�(r) = 2 cos r⇡

p

Dilute loop gas

with fugacities n,Q 2 R
A case of early progress and very late

A confluence of approaches
leading to a finite four-point function with logarithmic terms
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Figure 1.2: Illustration of loops (red) formed from bonds on the honeycomb lattice (left)

and on the square lattice (right).

Next, we compute the the spin configuration sum over each term, and we find

X

{✏}

(✏i1✏i2)(✏i3✏i4) . . . (✏i2m�1✏i2m) =

8
>><

>>:

2N2
if {⇥} consists of only loops

0 otherwise

(1.11)

for the following reason. If the bonds in {⇥} do not form only loops, then the sum

will have the same number of +1 terms as �1 terms as a result of the ± symmetry, so

it equals zero. However, if the bonds in {⇥} form a loop (figure 1.2), then the indices

of the spins may be arranged so that ✏i2 = ✏i3 , ✏i4 = ✏i5 , etc., and ✏i2m = ✏i1 . With

this rearrangement, we see that each term in the sum is one, so with |{✏}| = 2N2

terms, we arrive with (1.11). Similar reasoning leads to the same result when the

collection of bonds {⇥} consists of several non-crossing loops. Therefore we can write

the partition function as

ZO(1)(K) = 2N2
cosh2N2

(K/2)
X

{⇤}

x�, x := tanh(K/2), (1.12)

where {⇤} is the collection of non-crossing loops, � is the total number of bonds that

comprise the loops of {⇤}, and the sum is taken over all collections of non-crossing

loops. This is the high-temperature expansion of the Ising model, so called because it

is a power series in x centered at zero, or equivalently, in the temperature centered

at infinity.

We momentarily digress to exploit the self-duality of the square lattice in order
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LG universality class is discrete SQ symmetry

Second order phase transition for Q  4

Lattice discretization:
Q = 1: percolation
Dense loop gas
Related with the XXZ spin chain
(And also CP

m�1, m =
p
Q, ✓ = ⇡)

By duality it is (almost) the same as a dense loop gas
(�.� = 1)
Properties like central charge and (some) critical exponents
have been known for a long time
(and well studied in the boundary case using SLE)
(associated in particular with the [2r] representations)
(pretty much r and s are flipped compared with O(n))
Applications in probability theory

• Schur-Weyl duality in this case is between SQ acting in the tensor product

of the Q-dimensional representation and the Partition Algebra

n = 1 is Ising (discrete symmetry)

No “top-down” strategy - hence:

Crossings don’t matter

8

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

1

what is the corresponding CFT? 
what happens to the continuous symmetry? 

what does n non integer mean? 



Why things are difficult

• Conformal invariance of local massless field theories in 2D leads to the Hilbert space

being a representation of Vir⌦Vir

[Ln, Lm] = (n�m)Ln+m +
c

12
(n3

� n)�n+m

Critical exponents (hV (z, z̄)V (0, 0)i = z�2hz̄�2h̄) are eigenvalues of L0, L̄0

• Unitarity leads in particular to a full classification and solution of theories

with central charge c < 1

• Extra symmetries (e.g. SUSY, ZN ) can easily be added to the picture
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|n⇤
| ⇡ 0.6180

A(5/2,2/5)N

leading to a finite four-point function with more logarithmic terms

2D CFTs with continuous symmetries are usually described by
Wess Zumino Witten (WZW) models
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• From [1]⌦2 = []� [11]� [2] we get the tensor structure

• It can be reinterpreted in terms of diagrams

with

• We’ll use the bootstrap approach

Expand the four point function onto conformal blocks

D
:

• The spectrum is a priori very rich

S =
�
(r, s)N ; r 2 N⇤/2, s 2 Z/r

 
[ {h1, 1 + 2NiD}

The non diagonal part has

s values dense on the axis

The fact that �D
(1,3) is truly degenerate means the fusion rule

�13�rs = �r,s+2 + �rs + �r,s�2

is obeyed for all r, s
A relationship between amplitudes A(r,s+1)N and A(r,s�1)N (and Ah1,s+1iD and Ah1,s�1iD ) follows

simplifying the bootstrap, somewhat

(for
DQ4

i=1 V(ri,si)

E
)

A(r,s+1)N

A(r,s�1)N
= (�)2r2+2r4+1

Y

✏,⌘=±
�
�
✏s��2 + ⌘r

��✏
�
� 1�⌘

2 + (✏s+ ⌘)��2
� r

��✏

⇥
M(Prs, P1, P2)

M(Pr,�s, P̄1, P̄2)

M(Pr,s, P3, P4)

M(Pr,�s, P̄3, P̄4)
, (2)

⇢
Pi = Pri,si

P̄i = Pri,�si
, M(P1, P2, P3) =

Y

±,±
�
�
1
2 � ��1P1 ± ��1P2 ± ��1P3

�
. (3)

�2 =
x+ 1

x

Prs =
[(x+ 1)r � xs]2

4x(x+ 1)

Only the A(r,s)N for s 2 [0, 2) have to be determined.
The sums over s mod 2 of amplitudes are interpreted as interchiral blocks

E.g.

where
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Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)
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2D CFTs with continuous symmetries are usually described by
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Charges Qa give rise to a pair of chiral and antichiral local currents Ja, J̄a
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where k is a (usually quantized) anomaly (level)
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alas all this breaks down when unitarity is lost 

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤
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encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N
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Such a lattice model would only have O(n) symmetry in finite size,
but its symmetry would be extended (to the one of the non-intersecting
model) in the continuum limit.

Note: this is for the dilute loop model Di↵erent things happen in the dense case.
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but now the CFTs are fully solved! 

Ordinary (O(n) model) loop

Defect loop (line)

where the over/under crossings are defined by

The defect operator is diagonal in each ⇤r,s

The defect operator does not commute with ordinary crossings

[D, /\] 6= 0

Topological symmetry is what preserves the flow towards the dense fixed point

As far as symmetries are concerned:
- There exists currents in the adjoint with conformal weights (1, 0) and (0, 1)
- These currents are however non chiral, and satisfy OPEs involving both z and z̄
- The model is not WZW
- The grouping of O(n) representations does not follow from any known
“algebraic extension” of O(n)

Other than this, we are still working on refinements of major works such as

There are interesting topological symmetries arising from the non-crossing condition

Feigin Fuchs, Kac
Belavin, Polyakov, Zamolodchikov

H =
M

O(n)⌦ (Vir,Vir)

We want to know how to write

This can be extracted from the trace Z = Tr H qL0�c/24q̄L̄0�c/24

Using conformal mappings, this trace can be re-expressed as the
torus partition function

Using this kind of property is the essence of the BPZ strategy to determine
four-point functions and solve the theory

In the O(n) CFT a (very) few four-point functions (essentially, the energy) can
indeed be determined this way

The theory being non-unitary, the Virasoro norm is not positive definite and
there are (infinitely many) null states which are not vanishing

For all the other �rs in the theory (r, s integer, r > 1) the null descendents are indeed non zero

and involved in rank two Jordan blocks
(
)

Top and bottom fields have h = h̄ = hr,�s = hr,s + rs

Exact expressions for the Er,s and ⇤(r,s) are now known

Why is is important?

Relevant Virasoro representation theory is ... wild!
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Note on a  close cousin: the Q-state  Potts   model
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(1)

n-component vectors ~Si with O(n) symmetric ~Si.
~Sj coupling

Discrete spins � = 1, . . . , Q with SQ invariant ��i�j coupling
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Figure 1.5: The loop configuration corresponding to a particular regular/dual bond con-

figuration. The loops are generated through a hull-walk on the medial lattice. (The steps

of the walk have been rounded into quarter-circles in the figure.)

psqr
c can be written as

ZQ(psqr
c ) = (1� psqr

c )NbQNs/2
X

{⇥}

(
p

Q)Nl . (1.30)

Each bond configuration {⇥} corresponds one-to-one with a unique loop configuration

in which each side of an activated regular or dual bond is touched by a loop, so (1.30)

is really a sum over all such loop configurations. At the critical point, the presence

of clusters of all sizes implies loops of all lengths. Because every lattice site is visited

by a loop, this partition function is supposed to flow onto a renormalized dense-

phase loop gas with each loop enjoying a fugacity of n =
�

Q. We therefore call

the random cluster representation of the Potts model the dense phase of the Potts

model. Interestingly, this supposition provides a direct link between the continuum

limits of the Potts model and the O(n) model. Such a relation is surprising since

these generalizations of the Ising model initially appear to be quite di↵erent.

We have shown that the statistics of the Ising spin cluster perimeters have n = 1

dilute-phase loop gas descriptions thanks to (1.12) while the statistics of the Ising

FK cluster perimeters have n =
�

2 dense-phase loop gas descriptions thanks to
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Recent and ongoing work by
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Has second-order phase transition for n < 2

Alternatively the NL�M
flows to weak coupling for n < 2
and admits a critical point
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LG universality class is discrete SQ symmetry

Second order phase transition for Q  4

Lattice discretization:
Q = 1: percolation
Dense loop gas
Related with the XXZ spin chain
(And also CP

m�1, m =
p
Q, ✓ = ⇡)

By duality it is (almost) the same as a dense loop gas
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behaviour and hence do not change the infrared singularities which generate critical 
exponents differing from mean-field theory. This credo is confirmed indirectly by the 
agreement between, eg, the E expansion and high-temperature series expansions (some 
results are quoted in Wilson and Kogut 1974) and explicitly to a certain extent in the 
6 expansion (Wegner 1972, Wallace and Zia 1975a). 

In this spirit we are led to consider the Euclidean field theory with a Hamiltonian 

where ro is linearly increasing with temperature and some appropriate momentum 
cut-off is understood, to reproduce the effect of the lattice in the original lattice model. 
Q and F are couplings of the form (9): 

and Si jkJ  is the symmetric coupling, 

Si jk l  = 86i jdkJ  + 2 permutations). (12) 

Although the approximations applied in obtaining equation (10) from expression 
(5) involve essentially only the neglect of what are expected to be irrelevant couplings, 
they certainly do not guarantee equivalent phase transition behaviour for the two models. 
In particular the discrepancies apparent in the two-component model (see 9 1 for refer- 
ences) may simply be due to the high powers of the field (which are neglected in (10)) 
producing an effective 43 coupling with a very small coefficient. 

With this admonition let us return to expression (10) to study it as a field theory in 
its own right. The cases n = 1 (Ising model) and n = 2 (two-component Potts model) 
are familiar. In both cases the only 44 interaction is the symmetric one ($J~)'. In the 
case n = 3, the vertices of the tetrahedron also form the body diagonals (1 ,  1, 1) 
( -  1, - 1, l), ( -  1 , 1 ,  - 1) and (1, - 1, - 1) of a cube (only half of the total number so this 
is not a decoupled Ising model-see Syozi 1972 p 325, and references therein) and the 
interactions can be represented by 414263, (42)2 and 4;'+4;+4:. Apart from the 
trilinear interaction, this is the well known symmetric/cubic system. For n 2 4, the 
model does not correspond to any other known to us ; we consider the renormalization 
of the 44 couplings and the effect of the trilinear coupling in Q 3. 

3. Critical exponents of the Potts model 

We shall first consider the restricted Potts model by which we mean the system defined 
by the Hamiltonian (10) with no trilinear coupling (qo = 0). (It corresponds to a lattice 
model with 2(n + 1 )  state vectors f e:.) To study the critical behaviour of such a system, 
the renormalization programmes of Wilson (1972) and Nickel (1975) or Brezin et a1 
(1973) and Zinn-Justin (1974) could be followed ; we choose the former. Although many 
general features of multi-component systems of this genre are known (Brezin et a1 1974, 
Wallace and Zia 1974), there are interesting new features specific to the Potts model. 
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Discrete spins � = 1, . . . , Q with SQ invariant ��i�j coupling

The universality classes are very robust
Potts and dense loops per se are a bit di↵erent as CFTs
(properties of boundaries vs insides of clusters)

1

(Read Saleur)

• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable
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bits and pieces of a long story

what we have to do:  - identify the fields, their conformal  
                                     dimensions and their symmetries 

                                               - determine (all) the correlation functions 
                                                      (this will be achieved if we have determined  
                                                      the OPEs and the thre-point couplings 



The field (operator) content

⇢P = |0ih0| or ⇢P = |1ih1|

⇢m = |0ih0|+ |1ih1|

O↵set fully determined
by the zero modes

• Beware of finite size e↵ects in the presence of zero modes

• Not clear what happens for other models, e.g. the RSOS models (anyonic chains) or the three state-Potts
model:

Lattice realizations of the defects are known for the defects. Some are exact on the lattice, others only in the
continuum

Are there zero modes? How do they contribute?

• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect

(pure and mixed
give the same result)

In the mixed case the localized zero mode contributes 1
2 ln 2

Each delocalized zero mode contributes 1
2�S

�
r
L

�

The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
q̄
L̄0�c/24 encodes the operator content

Z can be calculated using Coulomb gas techniques:
particular care has to be taken of non-contractible loops
(all loops have weight n irrespective of their topology)

The result should have the form

Z =
X

h,h̄

degeneracy ⇥ q
h�c/24

q̄
h̄�c/24
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Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

• The O(n) symmetry is global, not LR factorized so this is not a WZW model

• The symmetry is however enhanced (to a non-invertible topological symmetry)

they correspond to glueings of O(n) representations
into larger blocks

DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
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the Hilbert space of the CFT:

⇢P = |0ih0| or ⇢P = |1ih1|

⇢m = |0ih0|+ |1ih1|

O↵set fully determined
by the zero modes

• Beware of finite size e↵ects in the presence of zero modes

• Not clear what happens for other models, e.g. the RSOS models (anyonic chains) or the three state-Potts
model:

Lattice realizations of the defects are known for the defects. Some are exact on the lattice, others only in the
continuum

Are there zero modes? How do they contribute?

• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect

(pure and mixed
give the same result)

In the mixed case the localized zero mode contributes 1
2 ln 2

Each delocalized zero mode contributes 1
2�S
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The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
q̄
L̄0�c/24 encodes the operator content

Z can be calculated using Coulomb gas techniques:
particular care has to be taken of non-contractible loops
(all loops have weight n irrespective of their topology)

The result should have the form

Z =
X

h,h̄

degeneracy ⇥ q
h�c/24

q̄
h̄�c/24

The degeneracies should be integer for n integer and in general correspond to (the dimensions of) the
irreducible representations of the symmetry

4

Ordinary (O(n) model) loop

Defect loop (line)

where the over/under crossings are defined by

The defect operator is diagonal in each ⇤r,s

The defect operator does not commute with ordinary crossings

[D, /\] 6= 0

Topological symmetry is what preserves the flow towards the dense fixed point

As far as symmetries are concerned:
- There exists currents in the adjoint with conformal weights (1, 0) and (0, 1)
- These currents are however non chiral, and satisfy OPEs involving both z and z̄
- The model is not WZW
- The grouping of O(n) representations does not follow from any known
“algebraic extension” of O(n)

Other than this, we are still working on refinements of major works such as

There are interesting topological symmetries arising from the non-crossing condition

Feigin Fuchs, Kac
Belavin, Polyakov, Zamolodchikov

H =
M

O(n)⌦ (Vir,Vir)
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14

⇢P = |0ih0| or ⇢P = |1ih1|

⇢m = |0ih0|+ |1ih1|

O↵set fully determined
by the zero modes

• Beware of finite size e↵ects in the presence of zero modes

• Not clear what happens for other models, e.g. the RSOS models (anyonic chains) or the three state-Potts
model:

Lattice realizations of the defects are known for the defects. Some are exact on the lattice, others only in the
continuum

Are there zero modes? How do they contribute?

• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect

(pure and mixed
give the same result)

In the mixed case the localized zero mode contributes 1
2 ln 2

Each delocalized zero mode contributes 1
2�S

�
r
L

�

The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
q̄
L̄0�c/24 encodes the operator content

Z can be calculated using Coulomb gas techniques:
particular care has to be taken of non-contractible loops
(all loops have weight n irrespective of their topology)

The result should have the form

Z =
X

h,h̄

degeneracy ⇥ q
h�c/24

q̄
h̄�c/24

4

Recall that: Z = Tr qL0�c/24q̄L̄0�c/24 encodes the operator content

Z can be calculated using “Coulomb gas” as well as
algebraic techniques : particular care has to be taken of non-contractible
loops (all loops have weight n irrespective of their topology)
Branching rules from Brauer to (a�ne) Temperley-Lieb algebras

The result should have the form

Z =
X

h,h̄

degeneracy ⇥ qh�c/24q̄h̄�c/24

The degeneracies should be integer for n integer and in general correspond to (the dimensions of) the
irreducible representations of the symmetry
E.g. the order parameter comes with [1] the vector representation

It turns out there is much more structure

n = q+ q�1

xd(n) = qd + q�d

The degeneracies are given by the mysterious formula

The degeneracies correspond (formally, as n not integer) to groupings
of O(n) irreps into blocks

�N

(r,s) =
qhrs�

c
24

P (q)
⇥

q̄hr,�s�
c
24

P (q̄)
(1)

• The appearance of �h1,si shows that �h12i = �12 ⌦ �12 is truly degenerate, ie it has a descendent

at level two that vanishes indeed

�12 having conformal weight h12, we know that it has a zero (Virasoro) norm descendent at level 2:

✓
L�2 �

3

2 + 4h12
L2
�1

◆
|�12i = 0

(where A12 ⌘ L�2 �
3

2+4h12
L2
�1)

h�12A
†

12|A12�12i = 0

The theory being non-unitary, the Virasoro norm is not positive definite and there can be such
null states which are not vanishing

But here we know by counting that this state is absent

• The �N

(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators
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n-component vectors ~Si with O(n) symmetric ~Si.
~Sj coupling

Discrete spins � = 1, . . . , Q with SQ invariant ��i�j coupling

The universality classes are very robust
Potts and dense loops per se are a bit di↵erent as CFTs
(properties of boundaries vs insides of clusters)
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by the zero modes

• Beware of finite size e↵ects in the presence of zero modes

• Not clear what happens for other models, e.g. the RSOS models (anyonic chains) or the three state-Potts
model:

Lattice realizations of the defects are known for the defects. Some are exact on the lattice, others only in the
continuum

Are there zero modes? How do they contribute?

• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect

(pure and mixed
give the same result)

In the mixed case the localized zero mode contributes 1
2 ln 2

Each delocalized zero mode contributes 1
2�S
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The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
q̄
L̄0�c/24 encodes the operator content

Z can be calculated using Coulomb gas techniques:
particular care has to be taken of non-contractible loops
(all loops have weight n irrespective of their topology)

The result should have the form

Z =
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h�c/24
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The degeneracies should be integer for n integer and in general correspond to (the dimensions of) the
irreducible representations of the symmetry
E.g. the order parameter comes with [1] the vector representation

It turns out there is much more structure
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• It can be reinterpreted in terms of diagrams

with

• We’ll use the bootstrap approach

Expand the four point function onto conformal blocks

D

6

A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s
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24
1� q

rs
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�
N
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q
hrs� c
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P (q)
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• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

But these are the exception, not the rule

• Recall the model with crossings flow anyway to the same CFT

as the model without

“One-way” Virasoro actions

for L0

(of course this only works if the spectrum is consistent)

�D
hr,si, r, s 2 N⇤ characters of irreducible

diagonal representations Khrs ⌦Khr,s

9

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

1

⇢P = |0ih0| or ⇢P = |1ih1|

⇢m = |0ih0|+ |1ih1|

O↵set fully determined
by the zero modes

• Beware of finite size e↵ects in the presence of zero modes

• Not clear what happens for other models, e.g. the RSOS models (anyonic chains) or the three state-Potts
model:

Lattice realizations of the defects are known for the defects. Some are exact on the lattice, others only in the
continuum

Are there zero modes? How do they contribute?

• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect

(pure and mixed
give the same result)

In the mixed case the localized zero mode contributes 1
2 ln 2

Each delocalized zero mode contributes 1
2�S

�
r
L

�

The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
q̄
L̄0�c/24 encodes the operator content

Z can be calculated using Coulomb gas techniques:
particular care has to be taken of non-contractible loops
(all loops have weight n irrespective of their topology)

The result should have the form

Z =
X

h,h̄

degeneracy ⇥ q
h�c/24

q̄
h̄�c/24

The degeneracies should be integer for n integer and in general correspond to (the dimensions of) the
irreducible representations of the symmetry
E.g. the order parameter comes with [1] the vector representation

4

Why is is important?

Relevant Virasoro representation theory is ... wild!

de Gennes
Regge, Mandelstamm, Polyakov, BPZ, El-Showk, Rychkov,. . .
Ferrara, Gatto, Parisi

Kac theorem - Virasoro Verma modules are
reducible when r, s 2 N⇤

15



62 CHAPTER 5. SOLVING THE POTTS AND O(N) CFTS

positive integer coefficients. To write down the multiplicities �(r,s) and ⇠(r,s), we first define
the modified Chebyshev polynomials pd(x) by the recursion:

xpd(x) = pd�1(x) + pd+1(x) with p1(x) = x and p0(x) = 2 . (5.1.4)

For instance, we have

p1(x) = x , (5.1.5a)
p2(x) = x

2 � 2 , (5.1.5b)
p3(x) = x(x2 � 3) , (5.1.5c)
p4(x) = x

4 � 4x2 + 2 . (5.1.5d)

The multiplicities of non-diagonal characters in (5.1.2) then read

⇠(r,s)(n) = �r,1�s22Z+1 +
1

2r

2r�1X

r0=0

e
⇡ir

0
s
p(2r)^r0(n) , (5.1.6)

where r^ r
0 denotes the greatest common divisor of r and r

0. For the Potts CFT, we have

�(r,s)(Q) = (Q� 1)(�1)r�
s2Z+ r+1

2
+

1

r

r�1X

r0=0

e
2⇡ir0s

pr^r0(Q� 2) for r > 0 (5.1.7)

⇠(r,s) and �(r,s) are symmetric under s ! �s and invariant under the shifts:

⇠(r,s) = ⇠(r,s+2Z) and �(r,s) = �(r,s+Z) (5.1.8)

It is therefore sufficient to write down ⇠(r,s) for 0  s < 2, while we need to compute �(r,s)

for 0  s < 1. For example,

(r, s) ⇠(r,s) �(r,s)

(12 , 0) n �
(1, 0) 1

2(n+ 2)(n� 1) �
(1, 1) 1

2n(n� 1) �
(32 , 0)

1
3n(n

2 � 1) �
(32 ,

2
3)

1
3n(n

2 � 4) �
(2, 0) 1

4n (n3 � 3n+ 2) Q

2 (Q� 3)

(2, 12)
1
4 (n

4 � 5n2 + 4) 1
2(Q� 1)(Q� 2)

(2, 1) 1
4(n� 2)n(n+ 1)2 Q

2 (Q� 3)

(2, 32)
1
4 (n

4 � 5n2 + 4) 1
2(Q� 1)(Q� 2)

(3, 0) 1
6 (n

6 � 6n4 + n
3 + 11n2 � n� 6) 1

3(Q� 1)(Q2 � 5Q+ 3)

(5.1.9)

Observe that examples in (5.1.9) are always polynomials in Q and n with rational coef-
ficients for �(r,s)(Q) and ⇠(r,s)(n). This is not apparent due to the phase factors in the
formulae (5.1.6) and (5.1.7). It was however recently shown in [30] that both �(r,s)(Q)
and ⇠(r,s)(n) are always polynomials with rational coefficients.
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However the numerical solution is accurate enough to establish fascinating
relations with Liouville, e.g. for the four-point function of the order operator

A(r+1,s)N

A(r,s)N

We don’t know for the moment where these rational functions of n come from

Using the interchiral blocks define

S[] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)} [ {h1, 1iD}

S[2] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)}

S[11] = {(r, s)N ; r 2 N,s 2 (2Z+ 1)/r \ [�1, 1)} (4)

We have the OPE
V [1]
(1/2,0)N ⇥ V [1]

(1/2,0)N =
X

k2S[]

V []
k +

X

k2S[11]

V [11]
k +

X

k2S[2]

V [2]
k

Generalized energy operators

Watermelon operators with even number of legs and
winding phases compatible with the symmetry

Er,s

7

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

1
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Observe that examples in (5.1.9) are always polynomials in Q and n with rational coef-
ficients for �(r,s)(Q) and ⇠(r,s)(n). This is not apparent due to the phase factors in the
formulae (5.1.6) and (5.1.7). It was however recently shown in [30] that both �(r,s)(Q)
and ⇠(r,s)(n) are always polynomials with rational coefficients.
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formulae (5.1.6) and (5.1.7). It was however recently shown in [30] that both �(r,s)(Q)
and ⇠(r,s)(n) are always polynomials with rational coefficients.

However the numerical solution is accurate enough to establish fascinating
relations with Liouville, e.g. for the four-point function of the order operator

A(r+1,s)N

A(r,s)N

We don’t know for the moment where these rational functions of n come from

Using the interchiral blocks define

S[] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)} [ {h1, 1iD}

S[2] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)}

S[11] = {(r, s)N ; r 2 N,s 2 (2Z+ 1)/r \ [�1, 1)} (4)

We have the OPE
V [1]
(1/2,0)N ⇥ V [1]

(1/2,0)N =
X

k2S[]

V []
k +

X

k2S[11]

V [11]
k +

X

k2S[2]

V [2]
k

Generalized energy operators

Watermelon operators with even number of legs and
winding phases compatible with the symmetry

Er,s
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Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

1

For example,

Λ( 12 ,0)
= [1] (4.43)

Λ(1,0) = [2] (4.44)
Λ(1,1) = [11] (4.45)
Λ( 32 ,0)

= [3] + [111] (4.46)
Λ( 32 ,

2
3 )

= Λ( 32 ,
4
3 )

= [21] (4.47)
Λ(2,0) = [4] + [22] + [211] + [2] + [] (4.48)
Λ(2, 12 )

= Λ(2, 32 )
= [31] + [211] + [11] (4.49)

Λ(2,1) = [31] + [22] + [1111] + [2] (4.50)
Λ( 52 ,0)

= [5] + [32] + 2[311] + [221] + [11111] + [3] + 2[21] + [111] + [1] (4.51)
Λ( 52 ,

2
5 )

= [41] + [32] + [311] + [221] + [2111] + [3] + 2[21] + [111] + [1] (4.52)

(Λ( 32 ,0)
was predicted by Bernardo Zan at BootStat 2021 based on the case n = 2, and Λ(2,0)

was given in gz20[14] using the same principle.)

Potts model spectrum
We define the formal representation

Λ′
1 = [1]− [] =⇒ dim(Λ′

1) = Q− 2 (4.53)

and the series of formal representations

(r ∈ N+ 2) Λ′
r = [] +

r−1∑

k=0

(−1)k[r − k, 1k] =⇒ dim(Λ′
r) = 0 (4.54)

We propose the ansatz for the spectrum:

Λ′
(r,s) = (−1)rδs∈Z+ r+1

2
[1] +

1

r

∑

g|r

ϕrs

(
r

g

)
xg




∑

r′| rg

Λ′
r′



 (4.55)

= (−1)rδs∈Z+ r+1
2
[1] +

1

r

r−1∑

r′=0

e2πir
′sxr∧r′




∑

r′′| r
r∧r′

Λ′
r′′



 (4.56)

By construction this has the right representation dim(Λ′
(r,s)) = D′

r,s, see Eq. (Dpjk4.12). The non-
trivial feature in this ansatz is the argument of xg. We have a series of representations of
dimension 0, so we could combine them in many ways without spoiling the resulting dimension
of Λ′

(r,s). The proposed ansatz leads to representations that decompose into irreducibles with
positive integer coefficients. Moreover, for r ≤ 6, it agrees with results from the centralizer of
the transfer matrix by Jacobsen and Saleur.

Exchanges with Mike Zabrocki led to the realization that Λ′
r has a simple representation in

terms of power sum representations pd,

Λ′
1 = p1 − 2 (4.57)

Λ′
r =
r∈N+2

∑

d|r

µ( rd)pd (4.58)
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Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

they correspond to glueings of O(n) representations
into larger blocks
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For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

• The O(n) symmetry is global, not LR factorized so this is not a WZW model

• The symmetry is however enhanced (to a non-invertible topological symmetry)

they correspond to glueings of O(n) representations
into larger blocks
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DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
Cardy 1988
Jacobsen Saleur 2023

1

Ordinary (O(n) model) loop

Defect loop (line)

where the over/under crossings are defined by

The defect operator is diagonal in each ⇤r,s

The defect operator does not commute with ordinary crossings

[D, /\] 6= 0

Topological symmetry is what preserves the flow towards the dense fixed point

As far as symmetries are concerned:
- There exists currents in the adjoint with conformal weights (1, 0) and (0, 1)
- These currents are however non chiral, and satisfy OPEs involving both z and z̄
- The model is not WZW
- The grouping of O(n) representations does not follow from any known
“algebraic extension” of O(n)

Other than this, we are still working on refinements of major works such as

There are interesting topological symmetries arising from the non-crossing condition

Feigin Fuchs, Kac
Belavin, Polyakov, Zamolodchikov

H =
M

O(n)⌦ (Vir,Vir)

We want to know how to write

This can be extracted from the trace Z = Tr H qL0�c/24q̄L̄0�c/24

Using conformal mappings, this trace can be re-expressed as the
torus partition function

Using this kind of property is the essence of the BPZ strategy to determine
four-point functions and solve the theory

In the O(n) CFT a (very) few four-point functions (essentially, the energy) can
indeed be determined this way

The theory being non-unitary, the Virasoro norm is not positive definite and
there are (infinitely many) null states which are not vanishing

For all the other �rs in the theory (r, s integer, r > 1) the null descendents are indeed non zero

and involved in rank two Jordan blocks
(
)

Top and bottom fields have h = h̄ = hr,�s = hr,s + rs

Exact expressions for the Er,s and ⇤(r,s) are now known
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FIG. 4. Illustration of a six-strand watermelon correlator. The
watermelon correlator is the probability that two microscopic discs
are connected by 2k strands (k = 3 in the figure). In the scaling
limit, this probability decays as C2k (r) ∼ |r|−2x2k where x2k is given
in Eq. (17).

Our analysis also leads to some general features of
“frustration-free” critical points, which we discuss in Sec. V.

III. SCALING FORMS

Let us begin by recalling the conventional quantum-critical
scaling forms for the equal and non-equal-time two-point
functions of a local scaling operator O, respectively,

〈O(r, 0)O(0, 0)〉 = AO

r2xO
(13)

(we consider an infinite system, and assume that 〈O〉 = 0) and

〈O(r, t )O(0, 0)〉 = 1
r2xO

FO

(
t

|r|z

)
. (14)

We would expect similar scaling forms in both real and
imaginary time, with different scaling functions F , but for
simplicity, we consider imaginary time throughout this pa-
per. We have suppressed nonuniversal dimensionful constants
built from the lattice spacing and the microscopic energy
scale (and for simplicity, we focus on spin-zero operators for
now, so that the dependence on r is only through |r|). Two
exponents appear here: z, the dynamical exponent discussed in
the previous section, and the scaling dimension xO. To have a
finite nonzero limit as |r| → 0, we need F (u) ∼ u−2xO/z, and
then

〈O(0, t )O(0, 0)〉 = BO

t2xO/z
. (15)

Finally, if the operator O is added to the Hamiltonian, then the
fact that

∫
d2r dt O(r, t ) scales like [length2+z−xO ] implies

that the RG eigenvalue of this perturbation is

yO = 2 + z − xO. (16)

At first sight, there is a paradox in applying these forms
to the quantum loop models. Consider the loop model at the
special value d = 1, where the ground state coincides with
that of the toric code (or the Ising paramagnet, depending
on the choice of Hilbert space). All equal-time two point
functions are strictly zero in this model (this vanishing was
emphasized in Ref. [7]). However, at the same time, various
operators, most notably the two-loop reconnection operator,
are RG relevant in this model (the relevance of two-loop
reconnection, which takes us to the toric code phase, has been

checked numerically [7]; we will give exact exponent values
below). These operators should therefore have positive RG
eigenvalues yO and scaling dimensions xO < 2 + z. Why do
we not see the corresponding power-law decay in the equal-
time correlation function (13)? Does this signal a breakdown
of renormalization group reasoning?

The resolution of this “paradox” is in fact simple, and there
is no need to abandon the scaling forms above. It is just that,
in the model with d = 1, all of the scaling functions FO(u)
vanish as u → 0. In Sec. VIII we show that, as a function of
d , the amplitudes AO(d ) vanish at d = 1, while the scaling
dimensions xO(d ) are finite and continuous there. While these
scaling dimensions cannot be extracted from the equal-time
two-point function, they can be probed using the temporal
correlator (15) or other more complex correlators.

While d = 1 is the most extreme case, where all equal-time
correlation functions are trivial, it turns out that for any d there
is a subset of scaling operators whose equal-time correlation
functions vanish. We show in Sec. V below that special
“hidden” operators whose equal-time correlators vanish are
a generic feature of frustration-free RG fixed points.

The vanishing of amplitudes AO is possible because of
the lack of symmetry under rotations in Euclidean space-time
that mix space and time (let alone under general 2 + 1D
conformal transformations). In CFT, it is common to use the
normalization convention AO = 1, but that is not possible
here. Another familiar feature of conformal field theory is the
orthogonality of two-point functions: covariance under special
conformal transformations implies that the two-point function
of O and O′ vanishes if xO '= xO′ [27]. Here we cannot
assume that in general. However, for equal-time correlation
functions, we can use the conformal invariance of the classical
ensemble described in Sec. II C to obtain the same result.

The next section (Sec. IV) describes properties of the
operator spectrum that arise from the dynamical topological
constraint. Then Sec. V discusses features that arise from the
frustration-free property and which therefore apply to any
critical frustration-free Hamiltonian. A key question for the
stability of the loop model critical points is the number of
relevant (or marginal) scaling operators; we discuss this in
Sec. VIII A.

IV. TOPOLOGICAL OPERATOR CLASSIFICATION

It is convenient to think of the topological classification
of operators in terms of Feynman histories, as mentioned in
Sec. II A. The dynamical constraint means that these histories
contain no reconnection events except those that are put
there by operator insertions. What does this mean for the
classification of scaling operators?

To answer this, it is useful to have in mind a renormaliza-
tion group (coarse-graining) transformation which acts on the
space-time Feynman histories. Roughly speaking, this trans-
formation eliminates information on length scales shorter than
b and on timescales shorter than bz for some dimensionless
rescaling factor b (we set microscopic dimensionful constants
to 1). We can think of it as smoothing out the world surfaces
of the loops (Fig. 2) on these scales. Small world surfaces can
also disappear below the new UV cutoff, i.e., be eliminated.
However, our coarse-graining transformation must faithfully

033051-6

• The multiplicities glue together O(n) irreps into irreps of a larger symmetry

• The �N

(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

• The �N

(r,s) = �r,s ⌦ �r,�s are the 2r watermelon operators

where an elementary cyclic permutation of the 2r lines around an extremity

gains a phase e
i⇡s (2rs = 0 mod 2).

(the null vector at level two vanishes indeed)

| {z }
⇤r,s

n vector

n(n� 1)/2 adjoint

2

LG universality class is discrete SQ symmetry

Second order phase transition for Q  4

Lattice discretization:
Q = 1: percolation
Dense loop gas
Related with the XXZ spin chain
(And also CP

m�1, m =
p
Q, ✓ = ⇡)

By duality it is (almost) the same as a dense loop gas
(�.� = 1)
Properties like central charge and (some) critical exponents
have been known for a long time
(and well studied in the boundary case using SLE)
(associated in particular with the [2r] representations)
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• The appearance of �h1,si suggests

that �h12i = �12 ⌦ �12 is degenerate

• The multiplicities glue together O(n) irreps into irreps of a larger symmetry

• The �N

(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

• The �N

(r,s) = �r,s ⌦ �r,�s are the 2r watermelon operators

where an elementary cyclic permutation of the 2r lines around an extremity

gains a phase e
i⇡s (2rs = 0 mod 2).

• Not every O(n) Young diagram gives rise to a di↵erent primary field

This is because in 2D not all tensors can be realized without crossings

For instance, ⌘

• Nonetheless the spectrum is very rich, with s mod 1 dense on [0, 1]

Theory is not rational

Turns out to be non quasi-rational either

• There are “currents” in the adjoint as expected: �N

(1,1);�
N

(1,�1)

• When r > 1 is integer, s is integer, either �rs or �r,�s is degenerate

But the null states are non zero:

• Now SQ representations are glued

⇤0
( 1
2 ,0)

= [1]

⇤0
(0,2) = [2]

⇤0
( 1
2 ,2)

= [11]

⇤0
(0,3) = [3] + [111]

⇤0
( 1
3 ,3)

= [21]

⇤0
(0,4) = [4 + [22] + [211] + [3] + [21] + 2[2] + [1] + []

⇤0
( 1
4 ,4)

= [31] + [211] + [21] + [111] + [11]

⇤( 1
2 ,4)

= [31] + [22] + [1111] + [3] + [21] + [2] + [11] + [1] (2)

where [�] is now a Young diagram with an additional first row of

length Q� |�|. For instance [1] ⌘ [Q� 1, 1]

(the null vector at level two vanishes indeed)

| {z }
⇤r,s

n vector

n(n� 1)/2 adjoint

• This time it is �h21i = �21 ⌦ �21 that is degenerate

• There are no currents (SQ is discrete symmetry)

2

They correspond to glueings of O(n) irreps into blocks

�N
(r,s) =

qhrs� c
24

P (q)
⇥

q̄hr,�s� c
24

P (q̄)
(1)

• The appearance of �h1,si shows that �h12i = �12 ⌦ �12 is degenerate, ie it has a descendent

at level two that vanishes indeed

�12 having conformal weight h12, we know that it has a zero (Virasoro) norm descendent at level 2:

✓
L�2 �

3

2 + 4h12
L2
�1

◆
|�12i = 0

(where A12 ⌘ L�2 �
3

2+4h12
L2
�1)

h�12A
†
12|A12�12i = 0

The theory being non-unitary, the Virasoro norm is not positive definite and there can be such
null states which are not vanishing

But here we know by counting that this state is absent

• The �N
(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

5

• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

But these are the exception, not the rule

• Recall the model with crossings flow anyway to the same CFT

as the model without
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⇡
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In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

• The O(n) symmetry is global, not LR factorized so this is not a WZW model

• The symmetry is however enhanced (to a non-invertible topological symmetry)

they correspond to glueings of O(n) representations
into larger blocks
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Cardy 1988
Jacobsen Saleur 2023
Duplantier Saleur
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They correspond to glueings of O(n) irreps into blocks
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• The appearance of �h1,si suggests that �h12i = �12 ⌦ �12 is degenerate

�12 having conformal weight h12, we know that it has a zero (Virasoro) norm descendent at level 2:
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• The appearance of �h1,si shows that �h12i = �12 ⌦ �12 is degenerate, ie it has a descendent

at level two that vanishes indeed

�12 having conformal weight h12, we know that it has a zero (Virasoro) norm descendent at level 2:
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The theory being non-unitary, the Virasoro norm is not positive definite and there can be such
null states which are not vanishing
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Virasoro representations and ``ghosts”

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

But these are the exception, not the rule

• Recall the model with crossings flow anyway to the same CFT

as the model without
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• Conformal invariance of local massless field theories in 2D leads to the Hilbert space

being a representation of Vir⌦Vir

[Ln, Lm] = (n�m)Ln+m +
c

12
(n3

� n)�n+m

Critical exponents (hV (z, z̄)V (0, 0)i = z�2hz̄�2h̄) are eigenvalues of L0, L̄0

• Unitarity leads in particular to a full classification and solution of theories

with central charge c < 1

• Extra symmetries (e.g. SUSY, ZN ) can easily be added to the picture

q = e2i⇡⌧ , ⌧ the torus modular parameter

D
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Ordinary (O(n) model) loop

Defect loop (line)

where the over/under crossings are defined by

The defect operator is diagonal in each ⇤r,s

The defect operator does not commute with ordinary crossings

[D, /\] 6= 0

Topological symmetry is what preserves the flow towards the dense fixed point

As far as symmetries are concerned:
- There exists currents in the adjoint with conformal weights (1, 0) and (0, 1)
- These currents are however non chiral, and satisfy OPEs involving both z and z̄
- The model is not WZW
- The grouping of O(n) representations does not follow from any known
“algebraic extension” of O(n)

Other than this, we are still working on refinements of major works such as

There are interesting topological symmetries arising from the non-crossing condition

Feigin Fuchs, Kac
Belavin, Polyakov, Zamolodchikov
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H =
M

O(n)⌦ (Vir,Vir)

We want to know how to write

This can be extracted from the trace Z = Tr H qL0�c/24q̄L̄0�c/24

Using conformal mappings, this trace can be re-expressed as the
torus partition function

Using this kind of property is the essence of the BPZ strategy to determine
four-point functions and solve the theory
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four-point functions and solve the theory

In the O(n) CFT a (very) few four-point functions (essentially, the energy) can
indeed be determined this way
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⇢P = |0ih0| or ⇢P = |1ih1|

⇢m = |0ih0|+ |1ih1|

O↵set fully determined
by the zero modes

• Beware of finite size e↵ects in the presence of zero modes

• Not clear what happens for other models, e.g. the RSOS models (anyonic chains) or the three state-Potts
model:

Lattice realizations of the defects are known for the defects. Some are exact on the lattice, others only in the
continuum

Are there zero modes? How do they contribute?

• Is there a pattern to the interface entanglement?

SA = SB

From the point of view of B, entanglement will have a contribution due to the presence
of the delocalized zero mode on a finite fraction L�r

L of the total system

Hence the entanglement reveals a (Majorana) zero mode localized on the defect

(pure and mixed
give the same result)

In the mixed case the localized zero mode contributes 1
2 ln 2

Each delocalized zero mode contributes 1
2�S

�
r
L

�

The pure case is a little more mysterious

Recall that: Z = Tr qL0�c/24
q̄
L̄0�c/24 encodes the operator content

Z can be calculated using Coulomb gas techniques:
particular care has to be taken of non-contractible loops
(all loops have weight n irrespective of their topology)

The result should have the form

Z =
X

h,h̄

degeneracy ⇥ q
h�c/24

q̄
h̄�c/24
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Generic logarithmic structure

The CFT is generically (i.e. for x generic) logarithmic
(related with XXZ)
(related with IK)

Ar,s�N

(r,s) = Ār,s�̄N

(r,s)

�̄N

(r,s) = �r,�s ⌦ �̄r,s�N

(r,s) = �r,s ⌦ �̄r,�s

 (r,s)

(L0 � hr,�s)

A† Ā†

A Ā

(3)

(r, s) 2 N
Top and bottom fields have h = h̄ = hr,�s = hr,s + rs. They are in a rank two Jordan cell
A, Ā are combinations of Vir (Vir) producing null states
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• The appearance of �h1,si suggests

that �h12i = �12 ⌦ �12 is degenerate

• The multiplicities glue together O(n) irreps into irreps of a larger symmetry

• The �N

(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

• The �N

(r,s) = �r,s ⌦ �r,�s are the 2r watermelon operators

where an elementary cyclic permutation of the 2r lines around an extremity

gains a phase e
i⇡s (2rs = 0 mod 2).

• Not every O(n) Young diagram gives rise to a di↵erent primary field

This is because in 2d not all tensors can be realized without crossings

For instance, ⌘

• Nonetheless the spectrum is very rich, with s mod 1 dense on [0, 1]

Theory is not rational

Turns out to be non quasi-rational either

• There are “currents” in the adjoint as expected: �N

(1,1);�
N

(1,�1)

• When r > 1 is integer, s is integer, either �rs or �r,�s is degenerate

But the null states are non zero:

• Now SQ representations are glued

⇤0
( 1
2 ,0)

= [1]

⇤0
(0,2) = [2]

⇤0
( 1
2 ,2)

= [11]

⇤0
(0,3) = [3] + [111]

⇤0
( 1
3 ,3)

= [21]

⇤0
(0,4) = [4 + [22] + [211] + [3] + [21] + 2[2] + [1] + []

⇤0
( 1
4 ,4)

= [31] + [211] + [21] + [111] + [11]

⇤( 1
2 ,4)

= [31] + [22] + [1111] + [3] + [21] + [2] + [11] + [1] (2)

where [�] is now a Young diagram with an additional first row of

length Q� |�|. For instance [1] ⌘ [Q� 1, 1]

(the null vector at level two vanishes indeed)

| {z }
⇤r,s

n vector

n(n� 1)/2 adjoint

• This time it is �h21i = �21 ⌦ �21 that is degenerate

• There are no currents (SQ is discrete symmetry)

2

Z =
X

dilute loop gas

K
B

c
n
L

Z =
X

clusters

(eKc � 1)BQC

=
X

dense loop gas

p
Q

L

(1)

n-component vectors ~Si with O(n) symmetric ~Si.
~Sj coupling

Discrete spins � = 1, . . . , Q with SQ invariant ��i�j coupling

The universality classes are very robust
Potts and dense loops per se are a bit di↵erent as CFTs
(properties of boundaries vs insides of clusters)

Q 2 [0, 4];
p

Q = 2 cos
⇡

x+ 1
, x 2 [1,1]

n 2 [�2, 2]; n = 2 cos
⇡

x
, x 2 [1,1]

c = 1� 6

x(x+ 1)

Set hrs =
[(x+ 1)r � xs]2 � 1

4x(x+ 1)

ZO(n) =
X

s22N+1

�h1,si +
X

r2 1
2N⇤

X

s2 1
rZ

(Er,s + �r,1�s22Z+1)�
N

(r,s)

ZSQ =
X

r2N⇤

�hr,1i + (Q� 1)
X

r2N+ 1
2

�
N

(r,0) +
1X

s=2

X

r2 1
sZ

D
0
r,s

�
N

r,s

n = q+ q�1

xd(n) = qd + q�d

Er,s =
1

2r

2r�1X

r0=0

e
i⇡r

0
s
x(2r)^r0(n), Er,s = Er,s mod 2Z

1

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

But these are the exception, not the rule

• Recall the model with crossings flow anyway to the same CFT

as the model without

“One-way” Virasoro actions

9

Loop soups
(ensembles of self-avoiding mutually avoiding loops
with fugacities per loop and bond)

• Are standard in many problems of statistical physics (O(n) model,

Q-state Potts model, disordered free electrons models (plateau

transitions...)

• Are a big thing in probability theory (SLE evolution)

• A simple lattice regularization

• The natural questions:

While many properties (like critical exponents) have been known for decades, first “phenomenologically” by physi-
cists (Coulomb gas constructions, Bethe-ansatz) (den Nijs, Nienhuis, Dotsenko Fateev, Duplantier Saleur...)
then rigorously by mathematicians (W. Werner, S. Smirnov, H. Dominil Copin...)

Understanding of the full CFT (OPEs, 4-point functions etc) has eluded us until very recently

Note that n can be extended to C

(A✏eck, Nienhuis, Schwimmer...)

(Knizhnik Zamolodchikov, A✏eck...)

The mild non-locality can be traded for genuine locality at the price of
introducing complex Boltzmann weights

(Some) Casimirs and dimensions become negative when n /2 N⇤

Why is unitarity lost?

• Only properties like the central charge and (some) critical exponents have

been known for a long time. E.g. (Dotsenko Fateev):

n 2 [�2, 2];n = 2 cos
⇡

x
, x 2 [1,1)

c = 1� 6

x(x+ 1)
2 [�2, 1]

In the SLE language

For r, s 2 N⇤ we have non-vanishing
zero norm square states

• As for the degeneracies

• The O(n) symmetry is global, not LR factorized so this is not a WZW model

• The symmetry is however enhanced (to a non-invertible topological symmetry)

• A simple example:
@̄J

a 6= 0

@J̄
a 6= 0

but both have zero norms square

1
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they correspond to glueings of O(n) representations
into larger blocks

DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
(see also Gorbenko Zan 2020)
Cardy 1988
Jacobsen Saleur 2023
Duplantier Saleur
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Ordinary (O(n) model) loop

Defect loop (line)

where the over/under crossings are defined by

The defect operator is diagonal in each ⇤r,s

The defect operator does not commute with ordinary crossings

[D, /\] 6= 0

Topological symmetry is what preserves the flow towards the dense fixed point

As far as symmetries are concerned:
- There exists currents in the adjoint with conformal weights (1, 0) and (0, 1)
- These currents are however non chiral, and satisfy OPEs involving both z and z̄
- The model is not WZW
- The grouping of O(n) representations does not follow from any known
“algebraic extension” of O(n)

Other than this, we are still working on refinements of major works such as

There are interesting topological symmetries arising from the non-crossing condition

Feigin Fuchs, Kac
Belavin, Polyakov, Zamolodchikov

H =
M

O(n)⌦ (Vir,Vir)

We want to know how to write

This can be extracted from the trace Z = Tr H qL0�c/24q̄L̄0�c/24

Using conformal mappings, this trace can be re-expressed as the
torus partition function

Using this kind of property is the essence of the BPZ strategy to determine
four-point functions and solve the theory

In the O(n) CFT a (very) few four-point functions (essentially, the energy) can
indeed be determined this way

The theory being non-unitary, the Virasoro norm is not positive definite and
there are (infinitely many) null states which are not vanishing

For all the other �rs in the theory (r, s integer, r > 1) the null descendents are indeed non zero
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Exact solution via the bootstrap
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5.3.1 Examples
We numerically solve the crossing-symmetry equation for some four-point functions, which
involve the primary fields V( 12 ,0)

, V(1,0), and V(1,1). Using these numerical results, we deduce
exact fusion rules among these three fields. Let us first define even- and odd-spin spectra
from the spectrum J O(n):

J odd = {(r, s) 2 J O(n)|rs 2 2Z + 1} , (5.3.13a)
J even = {(r, s) 2 J O(n)|rs 2 2Z} [ {h1, 1iD} . (5.3.13b)

Moreover, we only give examples of four-point functions wherein the number of solutions
eNO(n) coincide with the prediction from O(n) symmetry: IO(n). However, in general,
we find that eNO(n) is much smaller than IO(n). For example, we find eNO(n) = 15 for
the four-point function hV(2,0)V(2,0)V(2,0)V(2,0)i whereas IO(n) ⇠ O(103) for this four-point
function. We do not yet have clear explanations for this huge discrepancy and leave it for
future work.

The four-point function hV( 12 ,0)
V( 12 ,0)

V( 12 ,0)
V( 12 ,0)

i

Using (5.1.29a), the field V( 12 ,0)
transforms as a vector under O(n) symmetry, let us then

write the O(n) vector indices of the four-point function hV( 12 ,0)
V( 12 ,0)

V( 12 ,0)
V( 12 ,0)

i explicitly:

hV i1

( 12 ,0)
V

i2

( 12 ,0)
V

i3

( 12 ,0)
V

i4

( 12 ,0)
i = T

O(n)
[] A

(s)
[] + T

O(n)
[11] A

(s)
[11] + T

O(n)
[2] A

(s)
[2] , (5.3.14)

where

T
O(n)
[] = �i1i2�i3i4 , (5.3.15a)

T
O(n)
[11] = �i1i4�i2i3 � �i1i3�i2i4 , (5.3.15b)

T
O(n)
[2] = �i1i3�i2i4 + �i1i4�i2i3 �

2

n
�i1i2�i3i4 . (5.3.15c)

Therefore, O(n) representation theory predicts 3 linearly-independent solutions in this
case, and we indeed find 3 crossing-symmetry solutions. To write down the solution
A

(s)
�

, we again impose 3 linear constraints on 3 linearly-independent structure constants
in (5.3.14) such that fields, which propagate in the resulting solution, only transform
under O(n) as the representation �. For example, the solution A

(s)
[] can be singled out by

requiring the structure constants D
(s)
(1,1) and D

(s)
(1,0) to vanish and fixing the normalization

Dh1,1iD = 1. Let us now display numerical results for A(s)
[] ,

A
(s)
[] at �max = 40 and �

�1 = 0.8 + 0.1i

(r, s) <D(s)
(r,s) Deviation

h1, 1iD 1 0

(2, 0) �1.515508647813802768⇥ 10�3 2.2⇥ 10�19

(3, 0) 1.39468476197762⇥ 10�15 6.6⇥ 10�15

(3,±2
3) 8.3751227046841⇥ 10�8 1.2⇥ 10�14

(4, 0) 3.7⇥ 10�13 0.87

(5.3.16)
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They correspond to glueings of O(n) irreps into blocks

�N
(r,s) =

qhrs� c
24

P (q)
⇥

q̄hr,�s� c
24

P (q̄)
(1)

• The appearance of �h1,si shows that �h12i = �12 ⌦ �12 is degenerate, ie it has a descendent

at level two that vanishes indeed

�12 having conformal weight h12, we know that it has a zero (Virasoro) norm descendent at level 2:
✓
L�2 �

3

2 + 4h12
L2
�1

◆
|�12i = 0

(where A12 ⌘ L�2 �
3

2+4h12
L2
�1)

h�12A
†
12|A12�12i = 0

The theory being non-unitary, the Virasoro norm is not positive definite and there can be such
null states which are not vanishing

But here we know by counting that this state is absent

• The �N
(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

This corresponds to a model where loops can cross at vertices (but not overlap on edges).
Such a lattice model would only have O(n) symmetry in finite size, but its symmetry would
be extended (to the one of the non-intersecting model) in the continuum limit.

The mixture of O(n) representations in the ⇤r,s arises from branching rules
Brauer # a�ne Temperley-Lieb

This means that a few four-point functions can still be determined using the BPZ strategy

As for the other �rs in the theory (r, s integer, r > 1) their null descendents are non zero

• The spectrum is very rich, with s values dense

Theory is not rational

Turns out to be non quasi-rational either

• There are “currents” in the adjoint as expected: �N
(1,1);�

N
(1,�1)

But the theory is not WZW

• When r > 1 is integer, s is integer, either �rs or �r,�s is degenerate

But the null states are non zero, so the theory is generically logarithmic

• The order operator ~S transforms in [1] and creates an extra open line in the lattice model

• Its dimension is well known to be h1/2,0 = (x�1)(x+3)
16x(x+1) .

• From [1]⌦2 = []� [11]� [2] we get the tensor structure

• It can be reinterpreted in terms of the diagrams
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5

|n⇤
| ⇡ 0.6180

A(5/2,2/5)N

leading to a finite four-point function with more logarithmic terms

2D CFTs with continuous symmetries are usually described by
Wess Zumino Witten (WZW) models

Charges Qa give rise to a pair of chiral and antichiral local currents Ja, J̄a

with Kac-Moody algebra commutations

⇥
Ja
n , J

b
m

⇤
= fab

c Jc +
1

2
kn�ab�m+n

where k is a (usually quantized) anomaly (level)

These theories are fully solvable, but not very relevant to condensed matter physics

where one typically wants instead continuations such as O(n), n ! 0 etc

(of courses WZW models on supergroups can also be studied such as OSp(2, 2),
but these are not particularly relevant either)

O(n) Landau-Ginzburg model in 2D
escapes the Mermin-Wagner theorem
:
has second-order phase transition for n < 2

Alternatively the NL�M
flows to weak coupling for n < 2
and admits a critical point

�(g2�) = (n� 2)g4� +O(g6�)

No “top-down” strategy (it is not a WZW!) - hence:

This means that a few four-point functions can still be determined using the BPZ strategy

But not these are the exception, not the rule

• We’ll use the bootstrap approach

0

@Z /

Z Y

i

d~Si

Y

<ij>

⇣
1 +K ~Si.~Sj

⌘
1

A

(recall ~S creates a line)

8

they correspond to glueings of O(n) representations
into larger blocks

DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
(see also Gorbenko Zan 2020)
Cardy 1988
Jacobsen Saleur 2023
Duplantier Saleur

Nienhuis 1980’s

2

(focus on 4 point functions)
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From the lattice model, the choice of bases in (5.3.20) computes the probability of how
each pair of points belong on each line in the following diagrams:

i1 i4

i2 i3

�i1i2�i3i4C1 �i2i3�i1i4C2 �i1i3�i2i4C3 (5.3.21)

One can also relate the two sets of solutions in (5.3.14) and (5.3.20) and finds the following
linear transformations:

C1 = A
(s)
[] � 2

n
A

(s)
[2] , C2 = A

(s)
[2] + A

(s)
[11] , C3 = A

(s)
[2] � A

(s)
[11] . (5.3.22)

Furthermore, while the degenerate-shift equation for the first Kac index of four-point
structure constants does not exist in the O(n) CFT since its spectrum does not contain
the degenerate fields V

D

hs,1i with s > 1, similarly to the four-point connectivities of the
Potts CFT [15], we find that the four-point function hV( 12 ,0)

V( 12 ,0)
V( 12 ,0)

V( 12 ,0)
i satisfies a

renormalized version of the degenerate-shift equation (4.3.10). From [15], we write

D(r+1,s)

D(r,s)
= E(r,s)(n)

(
2
� 4s+2

�2
�(1�r

2 + s

2�2 )

�(2�r

2 + s

2�2 )

�(�r2 � s

2�2 )

�(1+�r

2 � s

2�2 )

�(1�r

2 + s+1
2�2 )

�(�r

2 + s+1
2�2 )

�(2+�r

2 � s+1
2�2 )

�(1+�r

2 � s+1
2�2 )

)
.

(5.3.23)

One can check that the quantity in the curly brackets of (5.3.23) satisfies the relation
(4.6.11) and is controlled by the degenerate-shift equation (4.3.10). With our numerical
results, we deduce some examples of the functions E (s)

(r,s)(n) in the s-channel of solutions
in (5.3.22). For instance,

Solutions (r, s) E (s)
(r,s)(n)

C1

(1, 0) �n
2+3n+6
2(n+1)

(2, 0) �4(n�1)(2n3+4n2�n�8)
3n(n2�2)(n2+3n+6)

C2, C3

(1, 0) � n
2

2(n+2)

(2, 0)
2(n�1)(n4+4n3+n

2�8n+8)
3(n�2)n(n+1)(n+4)

(5.3.24)

It is interesting to see that rational functions in (5.3.24) do not have zeroes at rational n
in general. Using the spectra in (5.3.19), let us now write the fusion rules:

V( 12 ,0)
⇥ V( 12 ,0)

=
X

k2J []\J even

V
[]
k
+

X

k2J [11]\J odd

V
[11]
k

+
X

k2J [2]\J even

V
[2]
k

. (5.3.25)

Our approach of deduce fusion rules cannot yet extract multiplicity of each field on the
right-hand side of (5.3.25), as well as in other fusion rules. We hope to revisit this problem
in the near future.
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We find that the structure constants D
(s)
(2N+2,1) vanish in the solutions A

(s)
[] , therefore we

have excluded them. Therefore, we have computed the solution A(s)
[] at high precision.

Moreover, any structure constants with integer indices correspond to the interchiral blocks
(4.6.8), which contain the logarithmic blocks G�

(r,s). Therefore, we have demonstrate G�
(r,s)

indeed appear in a four-point function of the O(n) CFT, which confirms the existence of
the logarithmic representations W

�

(r,s) in (5.1.10). Let us also display numerical results
for the other two solutions:

A
(s)
[11] at �max = 40 and �

�1 = 0.8 + 0.1i

(r, s) <D(s)
(r,s) Deviation

(1, 1) 1 0

(2,±1
2) �1.136421079784788769⇥ 10�3 4.7⇥ 10�20

(3,±1
3) 4.60859597460550⇥ 10�7 4.1⇥ 10�15

(3, 1) 2.43369637600654⇥ 10�7 3.1⇥ 10�15

(4,±1
4) 5.8⇥ 10�13 0.48

(5.3.17)

A
(s)
[2] at �max = 40 and �

�1 = 0.8 + 0.1i

(r, s) <D(s)
(r,s) Deviation

(1, 0) 1 0

(2, 0) �6.249142617756265636⇥ 10�3 2.1⇥ 10�19

(2, 1) �1.4658809155406988148⇥ 10�3 7.9⇥ 10�20

(3, 0) 2.06056149998946⇥ 10�7 7.1⇥ 10�15

(3,±2
3) 2.15149154275906⇥ 10�8 3.9⇥ 10�15

(4, 0) 6.1⇥ 10�13 0.57

(5.3.18)

Let us now summarize the spectra for each solution in (5.3.14).

Solutions Spectra
s t, u

A
(s)
[] J [] \ J even � (2N + 2, 1)

J O(n)
r2N⇤

A
(s)
[11] J [11] \ J odd

A
(s)
[2] J [2] \ J even

(5.3.19)

Indeed, one can also choose a different way of contracting the indices for the four-point
function in (5.3.14). For instance,

hV i1

( 12 ,0)
V

i2

( 12 ,0)
V

i3

( 12 ,0)
V

i4

( 12 ,0)
i = �i1i2�i3i4C1 + �i2i3�i1i4C2 + �i1i3�i2i4C3 (5.3.20)

They correspond to glueings of O(n) irreps into blocks

�N
(r,s) =

qhrs� c
24

P (q)
⇥

q̄hr,�s� c
24

P (q̄)
(1)

• The appearance of �h1,si shows that �h12i = �12 ⌦ �12 is degenerate, ie it has a descendent

at level two that vanishes indeed

�12 having conformal weight h12, we know that it has a zero (Virasoro) norm descendent at level 2:
✓
L�2 �

3

2 + 4h12
L2
�1

◆
|�12i = 0

(where A12 ⌘ L�2 �
3

2+4h12
L2
�1)

h�12A
†
12|A12�12i = 0

The theory being non-unitary, the Virasoro norm is not positive definite and there can be such
null states which are not vanishing

But here we know by counting that this state is absent

• The �N
(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

This corresponds to a model where loops can cross at vertices (but not overlap on edges).
Such a lattice model would only have O(n) symmetry in finite size, but its symmetry would
be extended (to the one of the non-intersecting model) in the continuum limit.

The mixture of O(n) representations in the ⇤r,s arises from branching rules
Brauer # a�ne Temperley-Lieb

This means that a few four-point functions can still be determined using the BPZ strategy

As for the other �rs in the theory (r, s integer, r > 1) their null descendents are non zero

• The spectrum is very rich, with s values dense

Theory is not rational

Turns out to be non quasi-rational either

• There are “currents” in the adjoint as expected: �N
(1,1);�

N
(1,�1)

But the theory is not WZW

• When r > 1 is integer, s is integer, either �rs or �r,�s is degenerate

But the null states are non zero, so the theory is generically logarithmic

• The order operator ~S transforms in [1] and creates an extra open line in the lattice model

• Its dimension is well known to be h1/2,0 = (x�1)(x+3)
16x(x+1) .

• From [1]⌦2 = []� [11]� [2] we get the tensor structure

• It can be reinterpreted in terms of diagrams

with

5

• The bootstrap program

they correspond to glueings of O(n) representations
into larger blocks

DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
(see also Gorbenko Zan 2020)
Cardy 1988
Jacobsen Saleur 2023
Duplantier Saleur

Nienhuis 1980’s

2

Ordinary (O(n) model) loop

Defect loop (line)

where the over/under crossings are defined by

The defect operator is diagonal in each ⇤r,s

The defect operator does not commute with ordinary crossings

[D, /\] 6= 0

Topological symmetry is what preserves the flow towards the dense fixed point

As far as symmetries are concerned:
- There exists currents in the adjoint with conformal weights (1, 0) and (0, 1)
- These currents are however non chiral, and satisfy OPEs involving both z and z̄
- The model is not WZW
- The grouping of O(n) representations does not follow from any known
“algebraic extension” of O(n)

Other than this, we are still working on refinements of major works such as

There are interesting topological symmetries arising from the non-crossing condition

Feigin Fuchs, Kac
Belavin, Polyakov, Zamolodchikov

H =
M

O(n)⌦ (Vir,Vir)

We want to know how to write

This can be extracted from the trace Z = Tr H qL0�c/24q̄L̄0�c/24

Using conformal mappings, this trace can be re-expressed as the
torus partition function

Using this kind of property is the essence of the BPZ strategy to determine
four-point functions and solve the theory

In the O(n) CFT a (very) few four-point functions (essentially, the energy) can
indeed be determined this way

The theory being non-unitary, the Virasoro norm is not positive definite and
there are (infinitely many) null states which are not vanishing

For all the other �rs in the theory (r, s integer, r > 1) the null descendents are indeed non zero

and involved in rank two Jordan blocks
(
)

Top and bottom fields have h = h̄ = hr,�s = hr,s + rs

Exact expressions for the Er,s and ⇤(r,s) are now known

Why is is important?

Relevant Virasoro representation theory is ... wild!

de Gennes
Regge, Mandelstamm, Polyakov, BPZ, El-Showk, Rychkov,. . .

14

Why is is important?

Relevant Virasoro representation theory is ... wild!

de Gennes
Regge, Mandelstamm, Polyakov, BPZ, El-Showk, Rychkov,. . .
Ferrara, Gatto, Parisi
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X
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P (q)P (q̄)

X

e2Z
q
h
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,�4 q̄
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e+1

2
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e2Z
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h
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,0 q̄

h
e+1

2
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X

(�,�̄)2S(k)

A(k)
�,�̄

F (k)
� ({zi})F (k)

�̄
({z̄i}), k 2 {s, t, u} (4)

X

(�,�̄)2S

A�,�̄

⇣
F (s)

� ({zi})F (s)
�̄

({z̄i})� F (t)
� ({zi})F (t)

�̄
({z̄i})

⌘
(5)

1

The functions P1, P2 and P3 are related to one another by permutations of their arguments,

P1(z1, z2, z3, z4) = P2(z1, z3, z2, z4) = P3(z1, z3, z4, z2) . (1.10)

Moreover, global conformal symmetry implies

Pσ

({

azi + b

czi + d

})

=
4
∏

i=1

|czi + d|4∆(0,12 ) · Pσ({zi}) , (σ = 0, 1, 2, 3) . (1.11)

Since the group of global conformal transformations z → az+b
cz+d

is three-dimensional, it

determines the dependence of Pσ({zi}) on only three of its four variables. The remaining
fourth variable, which is invariant under these transformations, is the cross-ratio

z =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (1.12)

This is why four-point functions encode much more information than two- and three-point
functions.

We interpret the four-point connectivities Pσ as four-point functions of conformal
primary fields that all have dimensions ∆ = ∆̄ = ∆(0, 12 )

. Assuming local conformal sym-

metry, such four-point functions are combinations of Virasoro conformal blocks F (k)
∆ ({zi}),

R =
∑

(∆,∆̄)∈S(k)

D(k)
∆,∆̄

F (k)
∆ ({zi})F (k)

∆̄
({z̄i}) , (k ∈ {s, t, u}) . (1.13)

The index k labels a channel, such that each formula for R is an expansion around a given

geometrical limit:

channel limit

s z1 → z2
t z1 → z4
u z1 → z3

(1.14)

Each term in the sum is the contribution of a primary state of left and right dimensions ∆

and ∆̄, plus its descendent states. The equality of the expressions for R in the s, t and u
channels is a constraint on the spectrums S(k) and on the structure constants D(k)

∆,∆̄
, called

crossing symmetry. The conformal bootstrap approach consists in solving this constraint.
(Consistency of the theory on a torus would lead to the further constraint of modular
invariance, which however applies to the complete spectrum of the theory, and does not

constrain our OPE spectrums S(k).)
In two-dimensional theories such as Virasoro minimal models, the spectrums are

known, and finite. The crossing symmetry equations can then be solved exactly, resulting
in analytic expressions for the structure constants [11]. On the other hand, in higher-

dimensional theories such as the three-dimensional Ising model, only some qualitative
features of the spectrums are known. Crossing symmetry can then be used for numerically
estimating a few of the infinitely many dimensions (∆, ∆̄), and the associated structure

constants [12, 13]. Here we will follow the intermediate approach of numerically estimating
a few structure constants, based on exact guesses for the spectrums.

– 3 –

Let us now insert the OPE in a four-point function of primary fields:
〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆|z|
2(∆−∆1−∆2)

×
(〈

V∆(0)V∆3
(∞)V∆4

(1)
〉

+O(z)
)

, (3.12)

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
|z|2(∆−∆1−∆2)

(

1 +O(z)
)

. (3.13)

The contributions of descendents factorize into those of left-moving descendents, generated
by the operators Ln<0, and right-moving descendents, generated by L̄n<0. So the last
factor has a holomorphic factorization such that

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
F (s)

∆ (z)F (s)
∆ (z̄) . (3.14)

Definition 3.7 (Conformal block)
The four-point conformal block on the sphere,

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +O(z)
)

, (3.15)

is the normalized contribution of the Verma module V∆ to a four-point function, obtained
by summing over left-moving descendents. Its dependence on c,∆1,∆2,∆3,∆4 are kept
implicit. The label (s) stands for for s-channel, we will soon see what this means.

Conformal blocks are in principle known, as they are universal functions, entirely deter-
mined by conformal symmetry. This is analogous to characters of representations, also
known as zero-point conformal blocks on the torus.

Exercise 3.8 (Computing conformal blocks)

Compute the conformal block F (s)
∆ (z) up to the order O(z), and find

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +
(∆ +∆1 −∆2)(∆+∆4 −∆3)

2∆
z +O(z2)

)

. (3.16)

Show that the first-order term has a pole when the Verma module V∆ has a null vector
at level one. Compute the residue of this pole. Compare the condition that this residue
vanishes with the condition (2.26) that three-point functions involving V〈1,1〉 exist.

Our axiom 2.7 on the commutativity of fields implies that the OPE is associative, and
that we can use the OPE of any two fields in a four-point function. In particular, using
the OPE of the first and fourth fields, we obtain

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆,∆1,∆4
C∆2,∆3,∆F

(t)
∆ (z)F (t)

∆ (z̄) , (3.17)

where F (t)
∆ (z) = (z−1)∆−∆1−∆4

(

1+O(z−1)
)

is a t-channel conformal block. The equality

of our two decompositions (3.14) and (3.17) of the four-point function is called crossing
symmetry, schematically

∑

∆s∈S

C12sCs34

2
s

3

1 4

=
∑

∆t∈S

C23tCt41

2

t

1

3

4

. (3.18)
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The CFT is generically (i.e. for x generic) logarithmic

(related with XXZ)

(related with IK)
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N
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N

(r,s) = �r,s ⌦ �̄r,�s

 (r,s)

(L0 � hr,�s)

A† Ā†

A Ā

(3)

(r, s) 2 N
Top and bottom fields have h = h̄ = hr,�s = hr,s + rs. They are in a rank two Jordan cell

A, Ā are combinations of Vir (Vir) producing null states

Order operator well identified as �( 1
2 ,0)

General bootstrap approach

Expand the four point functions onto conformal blocks:

The unknowns are the values of �, �̄ i.e. the spectrum.

The F (k)
� are determined from general principles as functions of c,� and the external weights h
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A Ā
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Order operator well identified as �( 1
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General bootstrap approach. Expand four point-functions

Expand the four point functions onto conformal blocks:

The unknowns are the values of �, �̄ i.e. the spectrum.

The F (k)
� are determined from general principles as functions of c,� and the external weights h

If the spectrum is known and identical for several channels

consistency conditions can be written, e.g.
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General bootstrap approach. Expand four point-functions

Expand the four point functions onto conformal blocks:

The unknowns are the values of �, �̄ i.e. the spectrum.

The F (k)
� are determined from general principles as functions of c,� and the external weights h

If the spectrum is known and identical for several channels

consistency conditions can be written, e.g.

Solving numerically for a range of values of z determines the amplitudes

3

A.2 Crossing symmetry and even spin spectrums

Let us justify the property of even spin spectrums that is invoked in Section 2.1. This
discussion is inspired from Section 7 of [30]. To begin with, let us write t- and u-channel
conformal blocks in terms of s-channel conformal blocks. The different channels are related

by permutations of {zi}, and this implies

F (t)
∆ (z) = F (s)

∆ (1− z) , F (u)
∆ (z) = z−2∆F (s)

∆ (1
z
) . (A.6)

Assuming that our spectrum and structure constants obey the s − t crossing symmetry
equation (2.6), the agreement with the u-channel becomes equivalent to

∑

(∆,∆̄)∈S

D∆,∆̄

(

F (s)
∆ (z)F (s)

∆̄
(z̄)− |z − 1|−4∆

(0, 12 )F (s)
∆ ( z

z−1)F
(s)
∆̄

( z̄
z̄−1)

)

= 0 . (A.7)

Using the identities

q( z
z−1) = −q , θ3(−q) = (z − 1)

1
4θ3(q) , H∆(−q) = H∆(q) , (A.8)

the agreement with the u-channel becomes

∑

(∆,∆̄)∈S

D∆,∆̄

(

1− (−1)∆−∆̄
)

F (s)
∆ (z)F (s)

∆̄
(z̄) = 0 . (A.9)

This vanishes if and only if all spins ∆ − ∆̄ in the spectrum S are even. Therefore, this

even spin condition is necessary and sufficient for our four-point function to be symmetric
under all permutations of {zi}, in other words to have the same spectrum and structure

constants in the u-channel as in the s- and t-channels.

A.3 Logarithmic regularization

In order to regularize a conformal block at its pole ∆ = ∆(r,s), we might be tempted to

take the residue,

Res
∆=∆(r,s)

F (s)
∆ (z) = Rr,sF (s)

∆(r,−s)
(z) . (A.10)

However, the resulting conformal block would behave as O(z
∆(r,−s)−2∆

(0, 12 )) near z = 0,

whereas we are looking for a regularization that behaves as O(z
∆(r,s)−2∆

(0, 12 )). So we

multiply the block with the factor ∆ − ∆(r,s) and then send ∆ not to ∆(r,s), but to

∆(r,s) + ( 0 1
0 0 ). The elements of the resulting matrix include not only Res

∆=∆(r,s)

F (s)
∆ (z), but

also the regularized block that would be obtained by using the recipe

lim
∆→∆(r,s)

1

∆−∆(r,s)
= log(16q) , (A.11)

in eq. (A.3). Using this regularization implies that we must also allow a contribution of
F (s)

∆(r,−s)
(z) with an unknown coefficient.

This regularization has an algebraic interpretation in terms of representations of the
Virasoro algebra where the Virasoro generator L0 is not diagonalizable.
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A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
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The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N

(0,s) for s even (and even only)

Pinched clusters

Should be similar in the O(n) model

or ⇤0
(0,3) = + for Q = 8

Note: the natural relationship between loops and O(n) is of Schur-Weyl duality
between O(n) acting on the tensor product of fundamental (vector) representations
and the Brauer algebra.

This corresponds to a model where loops can cross at vertices (but not overlap on edges).
Such a lattice model would only have O(n) symmetry in finite size,
but its symmetry would be extended (to the one of the non-intersecting
model) in the continuum limit.

Note: this is for the dilute loop model Di↵erent things happen in the dense case.
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• The appearance of �h1,si shows that �h12i = �12 ⌦ �12 is degenerate, ie it has a descendent

at level two that vanishes indeed

�12 having conformal weight h12, we know that it has a zero (Virasoro) norm descendent at level 2:
✓
L�2 �

3

2 + 4h12
L2
�1

◆
|�12i = 0

(where A12 ⌘ L�2 �
3

2+4h12
L2
�1)

h�12A
†
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The theory being non-unitary, the Virasoro norm is not positive definite and there can be such
null states which are not vanishing

But here we know by counting that this state is absent
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Brauer # a�ne Temperley-Lieb
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• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
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hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

But these are the exception, not the rule

• Recall the model with crossings flow anyway to the same CFT

as the model without

“One-way” Virasoro actions

for L0

(of course this only works if the spectrum is consistent)
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Definition 3.7 (Conformal block)
The four-point conformal block on the sphere,

F (s)
∆ (z) =

z→0
z∆−∆1−∆2

(

1 +O(z)
)

, (3.12)

is the normalized contribution of the Verma module V∆ to a four-point function, obtained
by summing over left-moving descendents. It is a locally holomorphic function of z. Its
dependence on c,∆1,∆2,∆3,∆4 are kept implicit. The label (s) stands for s-channel.

Conformal blocks are in principle known, as they are universal functions, entirely deter-
mined by conformal symmetry. This is analogous to characters of representations, also
known as zero-point conformal blocks on the torus.

Exercise 3.8 (Computing conformal blocks)

Compute the conformal block F (s)
∆ (z) up to the order O(z), and find

F (s)
∆ (z) =

z→0
z∆−∆1−∆2

(

1 +
(∆+∆1 −∆2)(∆+∆4 −∆3)

2∆
z +O(z2)

)

. (3.13)

Show that the first-order term has a pole when the Verma module V∆ has a null vector
at level one. Compute the residue of this pole. Compare the condition that this residue
vanishes with the condition (2.26) that three-point functions involving V〈1,1〉 exist.

Our axiom 2.7 on the commutativity of fields implies that the OPE is associative, and
that we can use the OPE of any two fields in a four-point function. In particular, using
the OPE of the first and fourth fields, we obtain

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆,∆1,∆4
C∆2,∆3,∆F

(t)
∆ (z)F (t)

∆ (z̄) , (3.14)

where F (t)
∆ (z) =

z→1
(z − 1)∆−∆1−∆4

(

1 + O(z − 1)
)

is a t-channel conformal block. The

equality of our two decompositions (3.11) and (3.14) of the four-point function is called
crossing symmetry, schematically

∑

∆s∈S

C12sCs34

2
s

3

1 4

=
∑

∆t∈S

C23tCt41

2

t

1

3

4

. (3.15)

The unknowns in this equation are the spectrum S and three-point structure constant
C. Any solution such that C is invariant under permutations allows us to consistently
compute arbitrary correlation functions on the sphere [7], not just four-point functions.

Definition 3.9 (Conformal field theory)
A (model of) conformal field theory on the Riemann sphere is a spectrum S and a
permutation-invariant three-point structure constant C that obey crossing symmetry.

Definition 3.10 (Defining and solving)
To define a conformal field theory is to give principles that uniquely determine its spec-

trum S and correlation functions
〈

∏N
i=1 V|wi〉(zi)

〉

with |wi〉 ∈ S. To solve a conformal

field theory is to actually compute them.
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A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
⇥ h.c.

The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N

(0,s) for s even (and even only)

Pinched clusters

Should be similar in the O(n) model
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[ {h1, 1 + 2NiD}
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D
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• The spectrum is a priori very rich

S =
�
(r, s)N ; r 2 N⇤/2, s 2 Z/r

 
[ {h1, 1 + 2NiD}

The non diagonal part has

s values dense on the axis

The fact that �D
(1,3) is degenerate means the fusion rule

�13�rs = �r,s+2 + �rs + �r,s�2

is obeyed for all r, s
A relationship between amplitudes A(r,s+1)N and A(r,s�1)N (and Ah1,s+1iD and Ah1,s�1iD ) follows

simplifying the bootstrap, somewhat

(for
DQ4

i=1 V(ri,si)

E
)

A(r,s+1)N

A(r,s�1)N
= (�)2r2+2r4+1

Y

✏,⌘=±
�
�
✏s��2 + ⌘r

��✏
�
� 1�⌘

2 + (✏s+ ⌘)��2
� r

��✏

⇥
M(Prs, P1, P2)

M(Pr,�s, P̄1, P̄2)

M(Pr,s, P3, P4)

M(Pr,�s, P̄3, P̄4)
, (2)

⇢
Pi = Pri,si

P̄i = Pri,�si
, M(P1, P2, P3) =

Y

±,±
�
�
1
2 � ��1P1 ± ��1P2 ± ��1P3

�
. (3)

�2 =
x+ 1

x

Prs =
[(x+ 1)r � xs]2

4x(x+ 1)

Only the A(r,s)N for s 2 [0, 2) have to be determined.
The sums over s mod 2 of amplitudes are interpreted as interchiral blocks

E.g.

where
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into larger blocks

DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
(see also Gorbenko Zan 2020)
Cardy 1988
Jacobsen Saleur 2023
Duplantier Saleur

Nienhuis 1980’s

Zamolodchikov

so matters somehow simplify and conformal blocks can be partly resummed
into interchiral conformal blocks (Gainutdinov Read Saleur 2018)
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Complementing the pure CFT numerical bootstrap (which can be carried out
to arbitrary accuracy)

• We have also carried out a lattice bootstrap, measuring amplitudes of four-point

functions directly on the lattice using transfer matrices (and sometimes Bethe-ansatz)

The agreement is perfect.

• In particular the following 4-point functions

can be determined exactly

• The same analysis can be carried out for all four-point functions. Some interesting

interplay with O(n) symmetry

Delfino, Viti, Picco, Santachiara, Ribault

Jacobsen Saleur
(V. Jones, Ram, Martin, Graham Lehrer, Read Saleur, Jacobsen Saleur, Estienne Ikhlef, Morin-Duchesne Ikhlef)

(Koo Saleur 1995, Vidal et al., Zini Wang)
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However the numerical solution is accurate enough to establish fascinating
relations with Liouville, e.g. for the four-point function of the order operator

A(r+1,s)N

A(r,s)N

We don’t know for the moment where these rational functions of n come from

Using the interchiral blocks define

S[] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)} [ {h1, 1iD}

S[2] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)}

S[11] = {(r, s)N ; r 2 N,s 2 (2Z+ 1)/r \ [�1, 1)} (4)

We have the OPE
V [1]
(1/2,0)N ⇥ V [1]

(1/2,0)N =
X

k2S[]

V []
k +

X

k2S[11]

V [11]
k +

X

k2S[2]

V [2]
k

7
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Watermelon operators with even number of legs and
winding phases compatible with the symmetry
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(Koo Saleur 1995, Vidal et al., Zini Wang)

The CFT is not rational and not quasi-rational
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Bootstrap for SAW (n→0)

A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
⇥ h.c.

The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N

(0,s) for s even (and even only)

Pinched clusters

Should be similar in the O(n) model

or ⇤0
(0,3) = + for Q = 8

Note: the natural relationship between loops and O(n) is of Schur-Weyl duality
between O(n) acting on the tensor product of fundamental (vector) representations
and the Brauer algebra.

This corresponds to a model where loops can cross at vertices (but not overlap on edges).
Such a lattice model would only have O(n) symmetry in finite size,
but its symmetry would be extended (to the one of the non-intersecting
model) in the continuum limit.

Note: this is for the dilute loop model Di↵erent things happen in the dense case.

 = 4x
x+1 ,  = 4(x+1)

x

z = z12z34
z13z24

5

LG universality class is discrete SQ symmetry

Second order phase transition for Q  4

Lattice discretization:
Q = 1: percolation
Dense loop gas
Related with the XXZ spin chain
(And also CP

m�1, m =
p
Q, ✓ = ⇡)

By duality it is (almost) the same as a dense loop gas
(�.� = 1)
Properties like central charge and (some) critical exponents
have been known for a long time
(and well studied in the boundary case using SLE)
(associated in particular with the [2r] representations)
(pretty much r and s are flipped compared with O(n))
Applications in probability theory
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This also implies the fusion rule V
[1]

(0, 12 )
⇥V

[1]

(0, 12 )
. Let us consider how (

sc[]
3.19)-(

sc[2]
3.20) can be written

as a linear combination of digrams. Recall

1 4

2 3

F1 F2
F3

(3.22)

whose spectra are given in (
s12abab
3.6)-(

s12aabb
3.7). Using numerical bootstrap, we found the following

relations in the s-channel,
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where n = 2 cos(⇡��2 + ⇡) and all four-point functions are normalized such that DId = 1.We
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D
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(1,0)

D
F2
(1,0)

= � 2

n
and D
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(1,0) = D

F3
(1,0) (3.26)

Moreover, numerical results imply vanishing structure constants in the s-channel,

D
[]
(2,j) = D

F1
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2

n
D

F2
(2,j) = D

F1
(2,j) +

2

n
D

F3
(2,j) = 0 for j 2 2Z+ 1 (3.27)

The above agrees with the fact that (2, 1) cannot be decomposed onto the singlet, see the next
subsection. The vanishing of (2, 2Z+ 1) then follows from the degenerate shift equation.

Correlators
D
(12 , 0)

2(1, 0)2
E

In all solutions, we have a series of vanishing structure constants,

Y = (2, 2Z+ 1) [ (3, 2Z+ 1) [ (4, 2Z+ 1) [ (5, 2Z+ 1) [ (6, 2Z+ 1) . . . (3.28) Y

In the s-channel, we then have the three solutions (
sc[]
3.19)-(

sc[11]
3.21) with a subtraction of (

Y
3.28).

More interesting is the t-channel. We can distinguish the 3 solutions by the appearance (or
absence) of the fields V

[1]

( 12 ,0)
, V [3]

( 32 ,0)
and V

[21]

( 32 ,±
2
3 )

. Computing the spectrums of these solutions
would be interesting, and would in particular constrain the model’s spectrum.
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There is no other truly degenerate (in particular no field �2,1 as would be the case
in Liouville at c < 1) field so no a priori full analytical solution of the bootstrap

However the numerical solution is accurate enough to establish fascinating
relations with Liouville, e.g. for the four-point function of the order operator

A(r+1,s)N

A(r,s)N

We don’t know for the moment where these rational functions of n come from

Using the interchiral blocks define

S[] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)} [ {h1, 1iD}

S[2] = {(r, s)N ; r 2 N,s 2 (2Z)/r \ [�1, 1)}

S[11] = {(r, s)N ; r 2 N,s 2 (2Z+ 1)/r \ [�1, 1)} (4)

We have the OPE
V [1]
(1/2,0)N ⇥ V [1]

(1/2,0)N =
X

k2S[]

V []
k +

X

k2S[11]

V [11]
k +

X

k2S[2]

V [2]
k

Generalized energy operators

Watermelon operators with even number of legs and
winding phases compatible with the symmetry

Er,s

(an exact formula for all ⇤(r,s) is now known)

C1

C2

C3
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The same can be done  for Q-state Potts 

A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
⇥ h.c.

The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

5

|n⇤
| ⇡ 0.6180

A(5/2,2/5)N

leading to a finite four-point function with more logarithmic terms

2D CFTs with continuous symmetries are usually described by
Wess Zumino Witten (WZW) models

Charges Qa give rise to a pair of chiral and antichiral local currents Ja, J̄a

with Kac-Moody algebra commutations

⇥
Ja
n , J

b
m

⇤
= fab

c Jc +
1

2
kn�ab�m+n

where k is a (usually quantized) anomaly (level)

These theories are fully solvable, but not very relevant to condensed matter physics

where one typically wants instead continuations such as O(n), n ! 0 etc

(of courses WZW models on supergroups can also be studied such as OSp(2, 2),
but these are not particularly relevant either)

O(n) Landau-Ginzburg model in 2D
escapes the Mermin-Wagner theorem
:
has second-order phase transition for n < 2

Alternatively the NL�M
flows to weak coupling for n < 2
and admits a critical point

�(g2�) = (n� 2)g4� +O(g6�)

No “top-down” strategy (it is not a WZW!) - hence:

This means that a few four-point functions can still be determined using the BPZ strategy

But not these are the exception, not the rule

• We’ll use the bootstrap approach

0

@Z /

Z Y

i

d~Si

Y

<ij>

⇣
1 +K ~Si.~Sj

⌘
1

A

(recall ~S creates a line)

C2

• Similar kind of glueings

• There no currents (SQ is discrete)

• Now it is �h21iD that is exactly degenerate
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Figure 4: Four types of diagrams contributing to the four-point function h�p/2�p/2�p/2�p/2i. Here we only
draw the basic clusters while there can be extra contractible and non-contractible clusters surrounding them.

clusters we can count their boundaries:11 the basic pair gives rise to two boundaries, and every surrounding
cluster contributes an extra pair. The total number of boundaries—namely, the number of non-contractible
loops—k (even) give rise to the multiplicity of the configurations

MAp�1(k) ⌘
1

p
Q

k

p�1X

r=1 odd

�k
(r)

=
1

p
Q

k

p�1X

a=1 odd

(qa + q�a)k ,

(37)

where q = ei⇡
p�q
p , and a is given in (32). It is not hard to find a general formula for these multiplicities:
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✓
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◆
+
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Notice when p > k, bk
p c = 0 and (38) reduces to

MAp�1(k) =
p

2
p
Q

k

✓
k

k/2

◆
. (39)

In particular we have in this case MAp�1(2) = p/Q, MAp�1(4) = 3p/Q2, etc. The multiplicity p/2 in the
Daaaa diagram (eq. (33)) where all loops are contractible is independent of Q. Note that this formally
coincides with MAp�1(0) as it should.

We then introduce “pseudo-probabilities”, such as

P̃
Ap�1

abab =
1

ZPotts

X

D2Dabab

WPotts(D)MAp�1(k) , (40)

11Although we have used so far mostly the language of loops, the mapping on the cluster formulation is obvious, simply by
taking loops as cluster boundaries.
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loops—k (even) give rise to the multiplicity of the configurations

MAp�1(k) ⌘
1

p
Q

k

p�1X

r=1 odd

�k
(r)

=
1

p
Q

k

p�1X

a=1 odd

(qa + q�a)k ,

(37)

where q = ei⇡
p�q
p , and a is given in (32). It is not hard to find a general formula for these multiplicities:

MAp�1(k) =
p

2
p
Q

k

✓
k

k/2

◆
+

p
p
Q

k

b k
p cX

n2N⇤

✓
k

k�np
2

◆
(�1)n. (38)

Notice when p > k, bk
p c = 0 and (38) reduces to

MAp�1(k) =
p

2
p
Q

k

✓
k

k/2

◆
. (39)

In particular we have in this case MAp�1(2) = p/Q, MAp�1(4) = 3p/Q2, etc. The multiplicity p/2 in the
Daaaa diagram (eq. (33)) where all loops are contractible is independent of Q. Note that this formally
coincides with MAp�1(0) as it should.

We then introduce “pseudo-probabilities”, such as

P̃
Ap�1

abab =
1

ZPotts

X

D2Dabab

WPotts(D)MAp�1(k) , (40)

11Although we have used so far mostly the language of loops, the mapping on the cluster formulation is obvious, simply by
taking loops as cluster boundaries.
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• The bootstrap program

• However �21 is not degenerate (contrast with Liouville at c < 1) so only

a numerical approach is possible

they correspond to glueings of O(n) representations
into larger blocks

DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
(see also Gorbenko Zan 2020)
Cardy 1988
Jacobsen Saleur 2023
Duplantier Saleur

Nienhuis 1980’s

Zamolodchikov

so matters somehow simplify and conformal blocks can be partly resummed
into interchiral conformal blocks (Gainutdinov Read Saleur 2018)

It can in fact be carried out to arbitrary accuracy, despite the large number of fields

Amazingly, the numbers can be fitted by (complicated) formulas, suggesting exact solvability
Complementing the pure CFT numerical bootstrap (which can be carried out
to arbitrary accuracy)

• We have also carried out a lattice bootstrap, measuring amplitudes of four-point

functions directly on the lattice using transfer matrices (and sometimes Bethe-ansatz)

The agreement is perfect.

• In particular the following 4-point functions

can be determined exactly

Delfino, Viti, Picco, Santachiara, Ribault

Jacobsen Saleur
(V. Jones, Ram, Martin, Graham Lehrer, Read Saleur, Jacobsen Saleur, Estienne Ikhlef, Morin-Duchesne Ikhlef)

(Koo Saleur 1995, Vidal et al., Zini Wang)
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where (�, �̄ are the conformal weights of the primary fields appearing in the operator product expansion
relevant at small z, that is when z1 ! z2 and z3 ! z4: this is called the s-channel. We can of course write

G(z, z̄) =
X

�,�̄2S

C�1�2���̄
C���̄�3�4z

(��h1�h2)z̄�̄�h̄1�h̄2 [1 + O(z, z̄)] (6)

The key question we want to address in this paper is the set S of values of �, �̄, which we will tackle
in part by a brute force numerical determination of a (very) large number of terms appearing in the right
hand side of (6). Note that the determination of the set S from the knowledge of these terms will only
be fully possible in “generic” cases, where none of the �, �̄ di↵er by integers. Otherwise, there will be
ambiguities, as a term such as � + n, �̄ + n̄ (with n, n̄ integer) may arise from a genuine primary field, or
from a Virasoro descendent of some primary field with weights � + p, �̄ + p̄, p < n or p̄ < n̄.

Our strategy is to study the expansion (6) on the cylinder, where we will be able to use, on the numerical
side, transfer matrix techniques, and, on the analytic side, algebraic results. The four point function on
the cylinder follows from (1) via the conformal map w = L

2⇡
ln z. Using the fact that the fields are primary,

and restricting to i = j = k = l for simplicity, we find

h�(w1, w̄1)�(w2, w̄2)�(w3, w̄3)�(w4, w̄4)icyl =

✓
2⇡

L

◆4(h+h̄) 1
��4 sinh ⇡w13

L
sinh ⇡w24

L

��2(h+h̄)
G(w, w̄) (7)

where now we must set

w =
sinh ⇡w12

L
sinh ⇡w34

L

sinh ⇡w13
L

sinh ⇡w24
L

(8)

Using (6) we can write this as

h�(w1, w̄1)�(w2, w̄2)�(w3, w̄3)�(w4, w̄4)icyl =

✓
2⇡

L

◆4(h+h̄) 1

|4 sinh ⇡w12
L

sinh ⇡w34
L

|2(h+h̄)

X

�,�̄2S

C�����̄
C���̄��

"✓
sinh ⇡w12

L
sinh ⇡w34

L

sinh ⇡w13
L

sinh ⇡w24
L

◆�✓ sinh ⇡w̄12
L

sinh ⇡w̄34
L

sinh ⇡w̄13
L

sinh ⇡w̄24
L

◆�̄

+ O(w, w̄)

#
(9)

In practice we will take the points w1, w2 on a given slice of imaginary time, and w3, w4 on another, distant,
slice along the cylinder. In other words, w12 and w34 will be fixed, while w13 and w24 will be large and
vary. In this limit, it will then be possible to compare the expansion (9) with the results of transfer matrix
calculations, and identify, in particular, the set S.

Let us now be more precise. We set

w1 = ia, w2 = �ia

w3 = i(a + x) + l, w4 = i(�a + x) + l (10)

which means the points w1,2 and w3,4 are distant from a on the vertical axis, l is the horizontal distance
(imaginary time) between the two groups, and on top of this we have the center of mass of w3,4 shifted by
x. A short calculation then gives

h�(w1, w̄1)�(w2, w̄2)�(w3, w̄3)�(w4, w̄4)icyl =

✓
2⇡

L

◆4(h+h̄)

e�8⇡hl/L

⇣
1 � e�2⇡(l+ix)/L

⌘�4h ⇣
1 � e�2⇡(l�ix)/L

⌘�4h

G

 
4ei⇡ sin2 2⇡a

L
e�2⇡(l+ix)/L

(1 � e�2⇡(l+ix)/L)2
,
4e�i⇡ sin2 2⇡a

L
e�2⇡(l�ix)/L

(1 � e�2⇡(l�ix)/L)2

!
(11)

We can then expand this from (6):

h�(w1, w̄1)�(w2, w̄2)�(w3, w̄3)�(w4, w̄4)icyl =

✓
2⇡

L

◆4(h+h̄) 1

(4 sin2 2⇡a

L
)4h

X

�,�̄2S

C�����̄
C���̄��

✓
4 sin2 2⇡a

L

◆�+�̄

(�1)���̄⇠�⇠̄�̄[1 + O(⇠, ⇠̄)] (12)

3

where we have set
⇠ ⌘ e�2⇡(l+ix)/L, ⇠̄ ⌘ e�2⇡(l�ix)/L (13)

The bracket [1 + O(⇠, ⇠̄)] contains now contributions from the conformal blocks and contributions from the
hyperbolic functions in the conformal map.

The expansion (12) is the crucial tool we will use systematically in our analysis below. The general
strategy will be to calculate the four point function numerically on the cylinder, and extract from our data
an expansion in powers of eigenvalues of the transfer matrix. We will then identify terms ⇠�⇠̄�̄ with powers
of the transfer matrix eigenvalues, and exponentials of the lattice momentum operator. This will give us
access to the set S as well as the coupling constants C�����̄

. In the following, we will sometimes use the
short hand notation

A���̄
⌘ C�����̄

C���̄�� (14)

We now discuss this in more detail.
Remark: We also see that if we exchange w1 and w2 in (9), the leading contributions for a given �, �̄ is

multiplied by (�1)���̄. Hence primary fields with odd integer spin should contribute an opposite weight.
This means for instance that in the numerical analysis below, we should have:

� � �̄ = even in S part

� � �̄ = odd in A part (15)

For future reference, the definition of the channels is

s z1 ! z2

t z1 ! z4

u z1 ! z3 (16)

Clearly, Paaaa should have the same spectrum (and structure constants) in all channels. Paabb should have
the same spectrum (and structure constants) in the s- and t-channels, while the spectrum should be di↵erent
in the u-channel.

4.2 The numerical algorithm

h To be written...

4.3 The transfer matrix sectors

Contrarily to what is implied in [4], the exponents of percolation are essentially known. They can easily be
associated with “sectors” of the transfer matrix, a fact that is better explained using an algebraic language.
The underlying object of interest here is the a�ne Temperley-Lieb algebra.

The Temperley-Lieb algebra has a long history and is deeply associated with work on the Potts model
[11, 12].

h Jesper, want to write something?

h The important distinction between clusters and lines. Maybe describe both ways to think of TL?

The Temperley-Lieb algebra per se is associated with the Potts model on a strip - ie with open bound-
aries. It is well known how a very similar object is relevant to the description of models on a cylinder - ie
with periodic boundary conditions. All one needs to do is add a last generator “closing” the system, eN ,
and define the labels modulo N so that eN+1 = e1, eNe1eN = e1, etc. This natural generalization however
takes one into a sticky mathematical problem: the corresponding algebra is then infinite dimensional, even
for finite N . In a nutshell, this occurs because of through lines or loops that can wind around the system.
While what must be done with these objects is clear in the Potts model itself, this requires extra information
that is not present in the definition of the “periodicized” Temperley-Lieb algebra. This extra information
takes the mathematical form of “quotients”.
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the usual contribution from 
transfer matrix eigenvalues :

the amplitude corrected by logarithmic mapping

A note on lattice techniques

• The appearance of �h1,si suggests

that �h12i = �12 ⌦ �12 is degenerate

• The multiplicities glue together O(n) irreps into irreps of a larger symmetry

• The �N

(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

• The �N

(r,s) = �r,s ⌦ �r,�s are the 2r watermelon operators

where an elementary cyclic permutation of the 2r lines around an extremity

gains a phase e
i⇡s (2rs = 0 mod 2).

• Not every O(n) Young diagram gives rise to a di↵erent primary field

This is because in 2d not all tensors can be realized without crossings

For instance, ⌘

• Nonetheless the spectrum is very rich, with s mod 1 dense on [0, 1]

Theory is not rational

Turns out to be non quasi-rational either

• There are “currents” in the adjoint as expected: �N

(1,1);�
N

(1,�1)

• When r > 1 is integer, s is integer, either �rs or �r,�s is degenerate

But the null states are non zero:

• Now SQ representations are glued

⇤0
( 1
2 ,0)

= [1]

⇤0
(0,2) = [2]

⇤0
( 1
2 ,2)

= [11]

⇤0
(0,3) = [3] + [111]

⇤0
( 1
3 ,3)

= [21]

⇤0
(0,4) = [4 + [22] + [211] + [3] + [21] + 2[2] + [1] + []

⇤0
( 1
4 ,4)

= [31] + [211] + [21] + [111] + [11]

⇤( 1
2 ,4)

= [31] + [22] + [1111] + [3] + [21] + [2] + [11] + [1] (2)

where [�] is now a Young diagram with an additional first row of

length Q� |�|. For instance [1] ⌘ [Q� 1, 1]

(the null vector at level two vanishes indeed)

| {z }
⇤r,s

n vector

n(n� 1)/2 adjoint

• This time it is �h21i = �21 ⌦ �21 that is degenerate

• There are no currents (SQ is discrete symmetry)

2

which implies the general fusion rules

�21�rs = �r+1,s + �r�1,s (6)

A relationship follows between the amplitudes

e.g. for non-diagonal fields

A(r+1,s)

A(r,s)
=

�(�s� r

�2 )�(1 + s� 1+r

�2 )�(
1�s

2 +
r

2�2 )�(
1+s

2 +
r

2�2 )�(
1�s

2 +
1+r

2�2 )�(
1+s

2 +
1+r

2�2 )

�(s+
1+r

�2 )�(1� s+
r

�2 )�(
1+s

2 � 1+r

2�2 )�(
1�s

2 � 1+r

2�2 )�(
1+s

2 � r

2�2 )�(
1�s

2 � r

2�2 )
(7)

�
2
=

x

x+ 1
(8)

Writing

we only need to determine the amplitudes for (r, s) where r 2 [0, 1].

The summation over r modulo 1 leads to interchiral blocks

G =

X

r2Q\[0,1],s2N;rs2N
A(r,s)F(r,s) (9)

While �12 is non-degenerate (the theory is not Liouville at c < 1),

there are strong indications of a full integrability

as the amplitudes are found to satisfy remarkable properties

Liouville amplitudes

Numerically determined coe�cient

The CFT is generically (i.e. for x generic) logarithmic with Jordan cells of rank two

Whenever x is rational, more complex logarithmic features develop

Interestingly, the complexity of the spectrum is, at least in part, necessary for

the theory to keep making sense at these points

For instance

a divergence then appears in the blocks

a degenerate weight

Four-point functions remain finite because, when Q ! Q
⇤

and the corresponding amplitude turns out to have a divergence

Q
⇤ ⇡ 0.5858

A 1
4 ,4

The corresponding four-point function in the diagonal CFT has a geometrical

interpretation similar to but di↵erent from the Potts model

�(r) = 2 cos
r⇡

p

Dilute and dense loops

A case of early progress and very late

A confluence of approaches

leading to a finite four-point function with logarithmic terms

• Thanks to the bootstrap the subject is (at last!) moving fast

• The role of symmetry is not yet fully understood

• It is not yet known whether all amplitudes can be obtained in closed form

• The full structure of the four-point functions when x is rational is not fully understood

A big obstacle for the longest time

The spectrum and amplitudes can be determined by

calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

4
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The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
⇥ h.c.

The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N

(0,s) for s even (and even only)

Pinched clusters

Should be similar in the O(n) model

or ⇤0
(0,3) = + for Q = 8

Note: the natural relationship between loops and O(n) is of Schur-Weyl duality
between O(n) acting on the tensor product of fundamental (vector) representations
and the Brauer algebra.

This corresponds to a model where loops can cross at vertices (but not overlap on edges).
Such a lattice model would only have O(n) symmetry in finite size,
but its symmetry would be extended (to the one of the non-intersecting
model) in the continuum limit.

Note: this is for the dilute loop model Di↵erent things happen in the dense case.

 = 4x
x+1 ,  = 4(x+1)

x

z = z12z34
z13z24

di↵erent values of the anharmonic ratio

The Pabab etc are expanded on eigenvalues of the transfer matrix
for a large set of wi coordinates. By solving the inverse problem, we
determine which of the eigenvalues actually contribute, and with which amplitude.
We do this for a variety of sizes, and extrapolate to the continuum limit.
Note: the number of eigenvalues is very large (in the thousands).
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|n⇤
| ⇡ 0.6180

A(5/2,2/5)N

leading to a finite four-point function with more logarithmic terms

2D CFTs with continuous symmetries are usually described by
Wess Zumino Witten (WZW) models

Charges Qa give rise to a pair of chiral and antichiral local currents Ja, J̄a

with Kac-Moody algebra commutations

⇥
Ja
n , J

b
m

⇤
= fab

c Jc +
1

2
kn�ab�m+n

where k is a (usually quantized) anomaly (level)

These theories are fully solvable, but not very relevant to condensed matter physics

where one typically wants instead continuations such as O(n), n ! 0 etc

(of courses WZW models on supergroups can also be studied such as OSp(2, 2),
but these are not particularly relevant either)

O(n) Landau-Ginzburg model in 2D
escapes the Mermin-Wagner theorem
:
has second-order phase transition for n < 2

Alternatively the NL�M
flows to weak coupling for n < 2
and admits a critical point

�(g2�) = (n� 2)g4� +O(g6�)

No “top-down” strategy (it is not a WZW!) - hence:

This means that a few four-point functions can still be determined using the BPZ strategy
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• The bootstrap program

• However �21 is not degenerate (contrast with Liouville at c < 1) so only

a numerical approach is possible

they correspond to glueings of O(n) representations
into larger blocks

DiFrancesco, Saleur, Zuber 1992; Read Saleur 2007
(see also Gorbenko Zan 2020)
Cardy 1988
Jacobsen Saleur 2023
Duplantier Saleur

Nienhuis 1980’s

Zamolodchikov

so matters somehow simplify and conformal blocks can be partly resummed
into interchiral conformal blocks (Gainutdinov Read Saleur 2018)

It can in fact be carried out to arbitrary accuracy, despite the large number of fields

Amazingly, the numbers can be fitted by (complicated) formulas, suggesting exact solvability
Complementing the pure CFT numerical bootstrap (which can be carried out
to arbitrary accuracy)

• We have also carried out a lattice bootstrap, measuring amplitudes of four-point

functions directly on the lattice using transfer matrices (and sometimes Bethe-ansatz)

The agreement is perfect.

Delfino, Viti, Picco, Santachiara, Ribault

Jacobsen Saleur
(V. Jones, Ram, Martin, Graham Lehrer, Read Saleur, Jacobsen Saleur, Estienne Ikhlef, Morin-Duchesne Ikhlef
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• The appearance of �h1,si suggests

that �h12i = �12 ⌦ �12 is degenerate

• The multiplicities glue together O(n) irreps into irreps of a larger symmetry

• The �N

(r,0) = �r,0 ⌦ �r,0 are the 2r watermelon operators

• The �N

(r,s) = �r,s ⌦ �r,�s are the 2r watermelon operators

where an elementary cyclic permutation of the 2r lines around an extremity

gains a phase e
i⇡s (2rs = 0 mod 2).

• Not every O(n) Young diagram gives rise to a di↵erent primary field

This is because in 2d not all tensors can be realized without crossings

For instance, ⌘

• Nonetheless the spectrum is very rich, with s mod 1 dense on [0, 1]

Theory is not rational

Turns out to be non quasi-rational either

• There are “currents” in the adjoint as expected: �N

(1,1);�
N

(1,�1)

• When r > 1 is integer, s is integer, either �rs or �r,�s is degenerate

But the null states are non zero:

• Now SQ representations are glued

⇤0
( 1
2 ,0)

= [1]

⇤0
(0,2) = [2]

⇤0
( 1
2 ,2)

= [11]

⇤0
(0,3) = [3] + [111]

⇤0
( 1
3 ,3)

= [21]

⇤0
(0,4) = [4 + [22] + [211] + [3] + [21] + 2[2] + [1] + []

⇤0
( 1
4 ,4)

= [31] + [211] + [21] + [111] + [11]

⇤( 1
2 ,4)

= [31] + [22] + [1111] + [3] + [21] + [2] + [11] + [1] (2)

where [�] is now a Young diagram with an additional first row of

length Q� |�|. For instance [1] ⌘ [Q� 1, 1]

(the null vector at level two vanishes indeed)

| {z }
⇤r,s

n vector

n(n� 1)/2 adjoint

• This time it is �h21i = �21 ⌦ �21 that is degenerate

• There are no currents (SQ is discrete symmetry)
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A big obstacle for the longest time

The spectrum and amplitudes can be determined by
calculating Pabab (for instance) and tackling the inverse problem

Algebraic considerations (a�ne Temperley-Lieb algebra and the like) are crucial

Action of Virasoro can be studied using discretizations of the Ln’s

�hr,si = q
hrs� c

24
1� q

rs

P (q)
⇥ h.c.

�
N

(r,s) =
q
hrs� c

24

P (q)
⇥ h.c.

The theory is not WZW

(O(n) �4 LG universality class )

(CP
m�1 (m ⌘

p
Q) at ✓ = ⇡)

2 [�2, 1]

Z = Tr qL0�c/24
q̄
L̄0�c/24

encodes the operator content

• The �N

(0,s) are the 2s cluster boundaries (hull) operators

Note the absence of �N

(0,1)

In particular all the �N

(0,s) for s even (and even only)

Pinched clusters

Should be similar in the O(n) model
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Conclusions and  summary

• Now it is �h21iD that is exactly degenerate

D

now have cluster expansions

Four point-functions can similarly be

• Non-unitarity precludes these models to be WZW theories. There are “currents” but they are not purely
chiral (e.g. the OPE Ja(z)Jb(0) might contain some z̄ dependency)

• In fact the currents do not seem to play much a role, and there is no qualitative di↵erence between O(n) and
SQ

• The symmetry is larger than O(n) or SQ.

• The spectrum is very rich, with a dense set of values of one Kac label. The theories are neither rational nor
quais-rational

• One type of field (depending on O(n) or SQ) �D
hr,1i or �

D
h1,ri is truly degenerate but not both.

• There are many fields with integer Kac labels which are degenerate and involved in rank two Jordan blocks

• When x is a root of unity, Jordan blocks of higher rank (in fact, arbitrarily high) appear

• Four-point functions can be accurately determined using the bootstrap. They are regular as a function of x.

• There are indications (e.g. exact amplitude ratios) that these theories are analytically solvable

But these are the exception, not the rule

• Recall the model with crossings flow anyway to the same CFT

as the model without

“One-way” Virasoro actions

for L0

(of course this only works if the spectrum is consistent)

�D
hr,si, r, s 2 N⇤ characters of irreducible

diagonal representations Khrs ⌦Khr,s

So this is almost (for physicists) the end of a story started more than 35 years ago
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• Recall the model with crossings flow anyway to the same CFT
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“One-way” Virasoro actions

for L0

(of course this only works if the spectrum is consistent with the existence of solutions in the first place)

�D

hr,si
, r, s 2 N⇤ characters of irreducible

diagonal representations Khrs ⌦Khr,s

So this is almost (for physicists) the end of a story started more than 35 years ago

As for future directions

• For the more mathematically oriented: rigorous construction of these CFTs, relationship with SLE, categorical
interpretation of O(n) symmetry when n 2 C (Binder Rychkov)

• It is not clear how these features will help solve more complicated models such as those describing plateau
transitions: our understanding of non-compactedness in CFT is still insu�cient
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• It is not clear how these features will help solve more complicated models such as those describing plateau

transitions: our understanding of non-compactedness in CFT is still insu�cient

• And so is our understanding of the landscape of non-unitary CFTs (how many spectra lead to meaningful
CFTs? how are the RG flows?)

• There are probably lessons about 3D to be learned from this

• Conformal invariance of local massless field theories in 2D leads to the Hilbert space

being a representation of Vir⌦Vir

[Ln, Lm] = (n�m)Ln+m +
c

12
(n3

� n)�n+m

Critical exponents (hV (z, z̄)V (0, 0)i = z�2hz̄�2h̄) are eigenvalues of L0, L̄0

• Unitarity leads in particular to a full classification and solution of theories

with central charge c < 1

• Extra symmetries (e.g. SUSY, ZN ) can easily be added to the picture

q = e2i⇡⌧ , ⌧ the torus modular parameter

D

Ja : h = 1, h̄ = 0

The problem is technically very involved, but not impossible

Hilbert space H = ([]� [1])⌦L

(while the “dilution” is physically important, it doesn’t really matter from the point of view
of symmetries and we will forget it (we can also study the “dense” model instead))

H = [1]L

The tensor product of the fundamental rep. with itself decomposes onto three irreps.

[1]2 = [] + [11] + [2]

n2 = 1 + n(n�1)
2 + n(n+1)

2 � 1

and correspondingly there are three invariant tensors describing the possible n.n. interactions

The last one is actually not relevant since the model does not (have to) allow crossings

�b
a
�d
c

�ac�
bd

�d
a
�c
b

The diagrams familiar in recoupling theory have a precise algebraic meaning in terms of
diagrams algebras and Schur-Weyl duality
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