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1. Motivation
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Motivation

: Focus, trap, guide, manipulate and control waves at subwavelength scales.

Explicit calculations are possible;

Only neighboring resonators interact with each other;

Analogies with quantum mechanical phenomena (tight-binding approximation for quantum
systems) = connects the field of high-contrast metamaterials to condensed-matter theory.

Formation of k-gaps;
Many wave operations such as signal amplification/compression, spacetime cloaking, ...

° : Wireless communications, biomedical superresolution imaging, quantum
computing.

: PDE model, capacitance matrix
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2. Problem Formulation
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Problem Formulation
Geometric Setup

® Subwavelength resonators: Objects exhibiting resonant phenomena in response to wavelengths
much greater than their size. Subwavelength = size of resonators is much smaller than the
operating wavelength.

e Unit cell: Aninterval Y := (0, L) containing N resonators D; := (z; ,z),Vi=1,..., N, each
of length ¢; and spacing ¢;(;;+1) between D; and D; ;.

® |nfinite system: Infinitely many contiguous unit cells covering R, the regime taken up by the
resonators is denoted by D + LZ := {x + kL : © € D,k € Z}, where D := Ufil D;.
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Problem Formulation
Material Parameters

* Time-dependency: Periodic in z with period L and in ¢t with period T" := 27/, given by

M

Ko, X ¢ D7 1 inQt

k(x,t) = = kine ,
(@,7) {mm(t), z € D;, ki(t) Z;M ’

M

D .
p(m,t) — {p07 xT ¢ ) 1 _ Z Ti’nelnnt-

prpi(t), x € Dy, pi(t)

n=—M
® High contrast assumption: § := p;/po < 1.

® Wave speed: vg := 4/k0/po outside D and v, := \/k:/p: inside D.

¢ Difficulty: Folding of resonant frequencies into the first Brillouin zone in time. = Only consider

resonant frequencies corresponding to eigenmodes essentially supported in the subwavelength
regime. = subwavelength quasifrequencies
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Problem Formulation
Goal

e Goal: For Q = O(6"/2) find w = O(6'/?) s.t.

Ot k(z,t) 0t Oz p(x,t) Oz

<8 1 9 o _1 a)u(m,t)—o, re€R,tER,

e wt is T—periodic,
) —lax

e is L—periodic,

has a non-trivial solution w(x,t).
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Problem Formulation
Governing Equations

® Fourier expansion + Floquet-Bloch in time domain + superposition of Bloch waves

iwt >, w/L
u(z, t) =e“" > /L On
n=—o00

® Coupled Helmholtz equations: Find v, (z, @) :

(z,2)e'™® da ™, where « is the momentum.

= By (z, a)e' ™ s.t.

d? po(w+nQ)2 .
e in (0,L)\D,
ot T =0 (0, L)\

2 2
R L in D,
dz2 " Ky ’
vn|_ (257) = val, (7)) forall 1 <i< N,
dv; dv

,m F\ n F .

o jE(aci)faa (zf) foralll1<i<N,

where

oo

- —m)Q
vf,n(:v,oz) = g Ts,mUn—m (2, ), v, n(z, ) E klymw + j—nQ m) Un—m (2, &).
w

m=—o00

m=—0o0
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3. Numerical Solution and Approximation
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Numerical Solution and Approximation

Exterior Solution

Lemma (Exterior Solution) [FCA23, Lemma 2.1]
The following exponential Ansatz solves the Helmholtz equation in R\ D:

v (z) = afe*"® 4 greTT vy e (xj,x;_l) ,
N c R? can be determined in terms of the boundary

|

foralli=1,..., N — 1. The coefficients («}’, 8i");_,
values v through
ST _an_+
o I i KES
ﬁ? 2isin (k"&(Hl)) _eik”z;+1 eiknxj' 'Un(CUi_+1) ’
foralli=1,..., N andforalln € Z.
i To do: determine (af, 8I")Y., € C?,Vn € Z, i.e. determine the boundary values of v,,.
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Numerical Solution and Approximation
Interior Solution

Lemma (Interior Solution) [ACHR23, Lemma 3.3]

For each resonator D;, fori = 1,..., N, the interior problem can be written as an
infinitely-dimensional system of ODEs Av; + C;v; = 0 with the unknown

vi(z, @) := [vn(,)]nez € C= forall z € D, for fixed a. Let {\} }.cz be the set of all eigenvalues of
C; with corresponding eigenvectors {f™*},cz. Using the square-roots +\}, of the eigenvalues X, the
solution to the interior problem over D; takes the form

oo
v _and ] _
v; = E (a?eﬂ"m + bie ‘X"z> f*", Vze (xl ,xj) ,

n=—oo

for coefficients {(a7, b7") }nez C C2.

t2) To do: determine {(al’,b!)}nez C C*,Vi=1,...,N.
K i i .
Truncation: choose /&~ € N and truncate the solution, v; = > (a?e“j“” + b?e*“ﬂ) ™ Vo e D;.

n=—K
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Numerical Solution and Approximation
Dirichlet-to-Neumann Map

Definition (Dirichlet-to-Neumann Map) [FCA23, Definition 2.1]

For any k™ € C, for fixed n € Z, which is not of the form mmx /¢;(; 1) for some m € Z\{0} and
1 < i < N — 1, the Dirichlet-to-Neumann map with wave number k™ := (w + n2) /v is the linear
operator 7% : C2N:@ 5 €2V« defined by

dv,

kn,oz 4 . o — 5
T % i<esn] : (i dz (a3 >1gi§N7

where v,, is the unique solution to the exterior Helmholtz equation and (v:*)~., ¢ C*:* is a sequence

of quasi-periodic boundary data defined s.t. v, = e** ;.

The Dirichlet-to-Neumann map can be expressed explicitly through a matrix-vector multiplication,
where we denote the matrix by 7%« ¢ C2Vx2N,

dv’
i,n

Transmission condition:

. (1:;‘:) = 6%|; (xf) = i%v;n(ml Ja) = 8T*" ]-i
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Numerical Solution and Approximation
Numerical Solution

Lemma (Transmission Condition) [ACHR23, Theorem 3.4]

The subwavelength quasifrequencies w are approximately satisfying, as § — 0, the following truncated

system of non-linear equations:

K .
. ® : J
) (g"d _ 5T e xyw) 1), oy = {ZJ

j=—K <is
and the matrices G™7 = G™7(w) and V™7 = V™7 (w) are given by

M s =
iz o —iXia;
n,j . j i —1)\161 i3 iXje™ " 2N x2N
g™’ .= diag Ti,mf;{'+17n+m it 5 7 CiNigT eC >
)\; —iXie %
1<i<N

m=—M

eiA;z; e—i/\;zi_

n,j . 3. 2N x2N
V= diag fK+1 no| iaigt —iXig eC :
e J e J i
1<i<N
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Numerical Solution and Approximation
Numerical Solution

Theorem [ACHR23, Theorem 3.4]

The subwavelength quasifrequencies w are approximately satisfying .A(w, 9) [w]-];fK = 0, where
A(w,d) € CPHNEE+X2NEEHD gnd w; € C2N are given by:

gK,K _ 67—kK,oz x VK,K . gK,fK _ 67—kK,a X VK77K
: : J
A(w, ) i= | GOK — g7 x YO GOK _gTR e x YK | wj = [‘H
. . 111<i<N
—K,K k;K —K,K —K,—K k;K a —K,—K
G " =0T X YT e G — 0T X YT

Use Muller's method to find w for which A(w, ¢) is not invertible.
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Numerical Solution and Approximation
Problems

A Run-time increases with increasing N and K, K must be sufficiently large for sufficient accuracy.

Absolute Error

> E -
b TP
10° 2 3 4 5

1
K

The run-time depends algebraically on K. With increasing K, the absolute error decreases.

O
@ We introduce the Capacitance matrix!
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Numerical Solution and Approximation
Capacitance Matrix Approximation

Lemma [AH21, Lemma 4.1]
As § — 0, the functions v}, (z, o) are approximately constant inside the resonator:

. =cin +0(1/2),

|(z

’L"L

Define ¢;(t) = E ¢, et

n=-—oo

Definition [ACHR23]

_ df

For any smooth function f : R — R, we define Iop, [f] by lop,[f] := 37| (z;) — j—;Z (a:j).

+
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Numerical Solution and Approximation
Capacitance Matrix Approximation

Capacitance matrix: C* := (Cij)1<ij<N (

nearly tridiagonal) same as in the static case [FCA23].

Theorem [ACHR23, Theorem 5.3]

The quasifrequencies in the subwavelength regime are, at leading order, given by the
quasifrequencies of the system of ordinary differential equations

M(t)¥(t) + 9" (t) =0,

where M%(t) = ‘%Wl (t)C*Wa(t) + Ws(t) with Wi, W, and W3 being diagonal matrices defined as

- VR d K
Wa)ii = Vi, (Wa)u = =5 aﬁi/év

(Wh)e = 7

fori =1,..., N, with

.....

ETHzirich Somiar o Aopted Mathematis Mathematical Aspects of Condensed Matter Physics 2023



Numerical Solution and Approximation
Numerical Simulations

Observations:

] - 1
Kl(t) - 1+e,,; COS(Qt+¢m,i)

o ® k-gaps: undesirable «
for which wave
propagation is
uncontrollable.

® p does not affect band
structure at leading
order.
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4. Conclusion & Outlook
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Conclusion & Outlook

® Solve the coupled Helmholtz equations exactly up to numerical errors.

e Capacitance matrix approximation to the subwavelength quasifrequencies in one dimension for a
quasi-periodic, time-modulated problem.

* Time-modulating p does not affect the subwavelength quasifrequencies at leading order.
® Time-modulating « leads to the formation of k-gaps.

® Next step: Formulate the scattering problem in the dilute regime and let N — oo while the
resonators have fixed size. Derive an approximation for N = 1. Obtain an effective medium
theory.
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Additional Material

Consider the solution V;* : R — R of the following problem:

iV =0, (0, L)\D,
Vf‘(x):&j, z € Dy,
‘/ia(x =+ ’ITLL) — eiamL‘/ia(m)’ m e Z.

The corresponding capacitance matrix is defined by

avy
dx

dvy

i = dx

(z) (@)

+

1 1 1
=77 dij—1) + ( +
(G-1)3

e—iaL eiaL
- 61j6iN€7 - 61i5jN7
N(N+1)

1
T+ ) dij — i)
Lj-n); fj(j+1>) LiGey
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Additional Material

or equivalently by

N ST _1 __eTil T
IN(N+1) L12 L12 LN(N+1)
__1 T S
Li2 Li2 L23 La3
c* = '
_ 1
‘ LN—1)N
elol 1 1 1
e e [ + 7

L N(N+1) (N—1)N (N=1)N N(N+1) J
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Additional Material
For fixed n € Z, the Dirichlet-to-Neumann map 7*"* admits the following explicit matrix

representation: for any k" € C\{mn/Ci(i41y : m € Z\{0}, 1 <i < N —1}, f = (fr<izn,
T = (T2 (£ hr1<izw is given by

n k™ cos(k"ZN(N_*_l)) k™ —iaL
k™, - —_—— —
Tkn a[fh sm(k”'ZN<N+1)) . sm(k'”ZN(NJrl))
T A (b12)
T [fn A" (Un—1yN)
T 1% k" olal o _ k" cos(R™ N (N 11))
sin(k™ N (N 41)) sin(k™ N (N 41))

where for any ¢ € R, A*" (¢) denotes the 2 x 2 symmetric matrix

k™ cos(k™¢) K™
k™ . T sin(k"E) sin(k™ ()
A (Z) T k"™ k" cos(k™0) | -

sin(km™£) T T sin(k70)

fr

1

e

N
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