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Abstract

We study regularization scheme dependence of S-function for sigma models with two-dimensional target space. Working
within four-loop approximation, we conjecture the scheme in which the S-function retains only two tensor structures up to cer-
tain terms containing (3. Using this scheme, we provide explicit solutions to RG flow equation corresponding to Yang-Baxter-
and A-deformed SU(2)/U(1) sigma models, for which these terms disappear.

Motivation

e The S-functions in QFT are known to depend on the renormalization scheme.
* In QFT’s with one coupling constant we can make the S-function 2-loop exact (for example, in gp4 theory).

e In QFT’s with two or more couplings it is not known in general, whether and how it 1s possible to achieve
such a simple form.

e [t 1s particularly interesting to study integrable deformations of 2-dimensional sigma models, for example,
n-deformed O(N) ones with two couplings.

e We know the S-function for 2-dimensional sigma models up to 4-loop order and how it varies under scheme
changes.

e For D = 2 target space there are much less different tensor structures and we have a hope to obtain a
particularly simple expression for the S-function in some scheme.

e We know some conjectured all-loop metrics in a certain scheme for n- and 2-loop ones for A-deformed
models (Hoare et al.’19), so it could be possible to find a simple expression for higher-loop S-functions.

Sigma models in 2 dimensions

* We study 2-dimensional sigma models
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* The metric G;;(X) also depends on some parameters treated as coupling constants, which vary with the
scale according to RG flow equation

Gij+ViVi+V;Vi= =BG . (2)
* The metric S-function 3;;(G) admits the covariant loop expansion

8i(G) = B(G) + 8@ + B + ... 3)

where L-th loop order S-function coefficient ﬁle belongs to the finite dimensional space of tensors with
given scaling properties.

e [t 1s convenient to have 1in mind that the metric 1s proportional to the inverse of the Planck constant, which
implies the following scaling for basic tensors
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g-function for D = 2 sigma models

e The [S-function is known up to 4 loops (Friedan’80, Graham’87, Foakes et al.’87, Jack et al.’89) in the
minimal subtraction scheme.

e The higher loop coefficients BZ(].L) for L > 1 are scheme dependent. They are related by covariant metric
redefinitions
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where Gz(f) is of the order i*.

e The S-function for the SM with two-dimensional target space 1s significantly simplified
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e Covariant metric redefinition is determined by several tensor structures at every order of h
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and so on.
e 1-loop and 2-loop S-functions 62(]1-) and 5£]2-) are scheme-independent.
e Higher order contributions to the S-function depend on the scheme, starting from the 3-loop order
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e Let us choose the covariant redefinition parameters to be
2
1 Cl Cl
° 6 27 9 (16)

e We found the combination of the scheme change parameters, for which the G-functionup to the 4-loop order
1s given by
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e One can notice that parts of this expression without (3 are the expansion of
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“All-loop” *‘sausage’ metric

 In (Fateev et al.”93) there was obtained the solution of 1-loop RG flow equation, which was later 1dentified
as semiclassical n-deformed O(3) metric (Hoare et al.’14) (also classically integrable (Lukyanov’12)).

e All-loop metric, however, in different scheme, was conjectured in (Hoare et al.” 19).

* The metric takes the form
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where the new couplings 7 and ~ satisfy the following flow equations
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and vector field has the form
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which resembles the integral equation from (Fateev’19).
‘“All-loop” A model metric
e There exists a solution to the 1-loop RG flow equation without any 1sometries
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e This metric is one-loop renormalizable with x running according to the leading in 7 order of and the vector
field given by
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e We propose an h completion which is also two-loop exact similar to the all-loop “sausage” action
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supplemented by the following vector field
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 Surprisingly, the parameter ~ satisfies the same RG flow differential equation as for the n-deformed model.

Conclusions and open problems

* We found the renormalization scheme, in which the expression for the 4-loop S-function for D = 2 sigma
models 1s particularly simple.

* It was shown to be connected to the S-function in the minimal subtraction scheme in the first 4 loop orders
by some covariant metric redefinition.

* We found the 4-loop solution to RG flow equation, corresponding to the - and A-deformed O(3) sigma
model, which was also shown to be consistent with the screening charges defining this theory.

e The renormalization scheme in question possesses an interesting property that the screenings do not receive
counterterm corrections, which requires further investigation.

e Found the “cigar” metric with one exponent solves the RG flow with some certain dilaton field.

e Generalize the obtained result for higher dimensional sigma model target spaces.



