Full analytic transseries of IQFTs
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Wiener-Hopf method

= 1+1 dim. O(N) NLSM

N

> ¢p =1
a=1
= chemical potential h for conserved charge ()s:

H = Hy—hQs Q- / 0z (61846 — dodir1).

= h > m : particles charged under (3 condense

= knowing their S-matrix, linear TBA for rapidity distribution x(8) in
the condensate:
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= at Fermi surface x(0 = £B) = 0 = gives relation = < B.
= free energy density's change
B q¢

5(h) = Fh) = 0 = [ S meosh(6)x(0)

_pB 2T
= h introduces an energy scale - for large h we use standard PT and
comparison gives the mass-gap relation

= other models: SUSY NLSM, PCF, Gross-Neveu, chiral GN, etc.
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Figure 1. Free energy density change of the O(3) NLSM. [1]

Non-perturbative physics and resurgence [2]

= finite domain convolution = extend with unknown X (60 < 0) =0
O
x(6) — / dO'K (O — 0 )x(0)=r0)+ X0 —-B)+ X(—B —0)
— OO
= generic source:

r(0) = cosh(nf), |0| < B

= Fourier-space:
(1 - K(w)) X(w) = 7(w) + PYX (w) + e PUX (—w)
= decomposing inverse to upper-/lower-half plane analytic G4 (w)
1
1 — K(w)
= inverting G+ (w) only, then projecting the equation
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=G4 (w)G-(w)

part = integral equation for X
—" part = solution as moment of X
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" Xn,+(w) analytic for upper half plane, thus m > 0

* Xp(w) has single pole at w = in

= Wiener-Hopf kernel - has cuts/poles along imaginary line

G_(w)

G (w) Gi(w) =

" Xn.+(im) encodes generic moments, is n <+ m symmetric:
/B 46 o(n+m)B

o Xn(0) cosh(mf) = e
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Source of non-perturbative terms and the
transseries Ansatz [5]
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Resurgence and median resummation [5]

* Xn.+(#m) and thus Ay, », is real = ambiguity cancellation:

Si(671)
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= expanding in e orders, if Sy is real this leads to:

= easy to see that Stokes-automorphism generates the insertions:

61/2An,m — An,m

Energy density

= (dimensionless) energy density of condensing particles is the
n,m =1 moment:

B 2B 2 (.
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X1,+(2)-

= Jlim differentiates e

im oy, due to pole 1/(n —

m) in Ap —m

= x14(i) = A +e 2B (20 AL 40128 — o))
+e 4By A_1 —1

where ¢’1 = dpo(in + 0)],=1, and for A
N Ap —m.

©, we drop the pole part

Comparison of models

= large B expansion of § f(h) is an asymptotic series [3]

Reconstructing exact value from PT expansion?

= causes of factorially growing coefficients:

= jnstantons - n! number of diagrams
= renormalons - contribution of specific graphs [4]

= after Borel-transformation it is a convergent series:
O 0

N n—+1 _ an n
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n=0 n=0
= Borel-resummable case = apply Laplace transformation, e.g.:
0

= Sp(r) = /ds e 5/7 Bo(s)
0
Non Borel-resummable case = singularities along real line
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1/n corrections in asymptotics
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= resurgence: A.-s are also expansion coefficients around s = 1!

= Bp(s) = (s — 1)j

reg.(s) —

= introduce lateral Borel-resummation = imaginary part:
110
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= the ambiguity (Hankel-contour above) contains the A alien
derivative of ¢(x) at x = 1

(84— S )p(x) = 2mi ¢ IS_ (Arp(z)),  Avpl(a ZA )

NP!

= Stokes-automorphism relates lateral resums:
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S=exp [ e FIAL|, S_(p) = S4(E )
k=1

= median resummation: its square-root generates a trans-series,
after lateral resummation it is real

1 1
&2 = o+ ée_l/xﬁlgo + 56_2/5’; ( A + Aggp)

= strong resurgence: median resummation gives the physical answer

Pphys = Smed(p) = S+(61/290)

Contour deformation

= B > 0: contour in (1),(2) closed from above

.:Dt's <GEX)

= shrink to Hankel-contour around cut of o(w)

= sources of e~ 28 NP corrections: poles along the cut in o(w) [6]

= rotating Hankel-contour and decomposing into discontinuity
and pole contributions

= discontinuity is integrated laterally

= residues: residue of X, (w) at w = in is unity + sum over
residues of o(w) along the cut at w = k-5
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where

S = Res,_rio(ik +0) oy =o(in+0)

= NP terms look like PT source term
1 1 1

T ) -m (k) -m

= PT quantities will be building blocks:

n—1m
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+ O(1/B),

Xpn(im) = Po(m) + NP Py(m) = Ap —m = + O(1/B)

— An,m T NP; An,m — Am,n —

Xn,+(7;m> n - m

= Ansatz: linear combination of PT solutions:
Xn(im) = Po(m)+one *P"P_py(m)+Y " iSpe PP X, (ik) P_j(m)
k

= consistency equation for X, (¢k), i.e. X, evaluated at poles
" recursive solution in terms of Ay,

Solution as a transseries
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where A, contains every possible NP “insertion™:
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Non-trivial n = m and n =0 or m = 0 limits!
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The O(4) NLSM case

= g1 =0, o'1 =24, setof poles k =2,4.6, ...
e=A11— 2ie 2B
= Ap1 has asymptotical expansion in small variable v = 1/(2B5),

thousands of coefficients by Volin’s method [3]
= strong resurgence holds up to simple pole term:
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€phys = Smed(A1,1) — 2ie

The O(3) NLSM case
" o1 =1/e, 0’1 =1/(2e)
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" the Ay 1 expansion contains In B terms, we introduce “running
coupling” v = power series in v

2B =1/v + In(v) + const.

= physical value not reconstructible from PT sector alone!

€phys = Smed(A1,1 + 1 inst. + 2. inst) — %6—23

TBA vs transseries for O(3) NLSM
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Figure 2. Comparison of numerical TBA solution and lateral Borel-resummation
of transseries.
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