Heating up the AdS; Quantum Spectral

Curve

Simon Ekhammar
2306.09883, 2306 XX. XXXX w J. Minahan & C. Thull

(2211.07810 w A.Cavaglia, N. Gromov & P. Ryan)

Uppsala Universitet/King's College London

ING’S
College

LONDON

European Research Council

UNIVERSITET

by the European C



Introduction

| | Main tOpiC Of thls talk: [Gromov, Kazakov,Leurent,Volin '13'14]

2/37



Introduction

| Main tOpiC Of th|s talk: [Gromov, Kazakov,Leurent,Volin '13'14]

T

The Quantum Spectral Curve

m The Quantum Spectral Curve (QSC) is the most efficient method to
attack the spectral problem of planar D = 4 N' = 4 SYM.



Introduction

| Main tOpiC Of th|s talk: [Gromov, Kazakov,Leurent,Volin '13'14]

The Quantum Spectral Curve

m The Quantum Spectral Curve (QSC) is the most efficient method to
attack the spectral problem of planar D = 4 N' = 4 SYM.

m The QSC also has applications beyond ' = 4 and the spectral
problem.



Introduction

| Main tOpiC Of th|s talk: [Gromov, Kazakov,Leurent,Volin '13'14]

A

The Quantum Spectral Curve

m The Quantum Spectral Curve (QSC) is the most efficient method to
attack the spectral problem of planar D = 4 N' = 4 SYM.

m The QSC also has applications beyond ' = 4 and the spectral
problem.

m Focus of today: The Hagedorn temperature in AdS,/CFT3 using
the QSC.
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m Other Q-functions are obtained from QQ-relations. Example:
Qa+|i_Q;| =P.Q;, f[n]Zf(U—i-ig), FE _ flE

m Large u encode quantum numbers.
f—soﬁ quantum numbers

i

Pa o0 Ast M
A=A0 4 ¥

Mi—1
Qi ~yseo Bit™

5l 2 quantum numbers



The spectral problem

m The QSC allows computations both at strong and weak coupling
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The spectral problem

m The QSC allows computations both at strong and weak coupling
[Marboe,Volin'14,"18,Gromov,Levkovich-Maslyuk,Sizov'15,]

QSC!

N =45SYM @
AdSs/CFT, ) &£ ‘ \s a

m Weak coupling: Perturbation around a non-compact spin chain.

[e] B [e] o/ 1
. . . Functions: v, 3, ns =

2 2% —

0 1
n=0 (u+in)5’ s

m Strong coupling: Have to resort to numerical methods!
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Variations of QSC

m There exist a plethora of deformations of the N’ = 4 QSC.

[Klabbers,van Tongeren '17] [Gromov, Kazakov,Korchemsky,Negro,Sizov '17)
[Gromov, Levkovich-Maslyuk '15]

Wilson” Lines 7n- deformations Fishnets

m For AdS/CFT currently only two other curves on the market

ABJM
AdS4 X C[FD3

[Cavaglia,Fioravanti,Gromov, Tateo 14'] [SE,Volin'21]
[Cavaglia,Gromov,Stefanski, Torrielli,21']

Conjecture: AdSzxS3xT* with RR-flux
(TBA was constructed [Frolov.Sfondrini 21))
Agree? Open question.



Status of low-dimensional QSC

AdS, AdS3
Status: Derived from TBA Conjectured
Algebraic Structure: M@(Z 05Pg|4 % %
psiy 12 @ Psiy g2
Analytic Structure Quadratic cuts No quadratic cuts

"sl," Weak Coupling

[Bombardelli,Cavaglia,Conti, Tateo "18]
[Anselmetti,Bombardelli,Cavaglia, Tateo '15]

Strong Coupling Numerics /

[Bombardelli,Cavaglia,Conti, Tateo "18]

v

[Cavaglia,SE,Gromov,Ryan '22]

?



Example of explicit results

m The AdS; QSC was solved in an "sl"-sector, AdS3 analogue of
tr ZDSZ [Cavaglia,SE,Gromov,Ryan'22]
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m The AdS; QSC was solved in an "sl"-sector, AdS3 analogue of
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Example of explicit results

m The AdS; QSC was solved in an "sl"-sector, AdS3 analogue of
tr ZDSZ [Cavaglia,SE,Gromov,Ryan'22]

864 576
o=12g24+—g3 48— =
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357 3 2187570
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87587513 1469657

m Fitting S = 2,4, 6, 8 it was found that

38 4
Vs = 851(S) g°+ 551 (7(% - 21 e (3)3) g*+0(g%)
— 51(S) = szl ;
m Features
gOdd # 357r 51(8)
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Unexpected Early wrapping!



The Hagedorn temperature from the AdS,; QSC
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Beyond the spectral problem: Hagedorn

m The Hagedorn temperature, Ty, is the temperature for which the
partition function diverges:

1
Il _ﬁD p— :7-
TL[[;_He 00, B T

The dilation operator

m Goal: Compute the Hagedorn temperature for ABJM (in the large N

limit) using QSC following the N’ = 4 computation of Harmark and
W|Ihe|m [Harmark,Wilhelm 177,18",21'].
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zo(y) = (1—y)? (1 ) (1—y)3
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Hagedorn from QSC

Finite coupling using TBA and QSC explained in [Harmarkwilhelm 17,18' 217].
They gave the following recipe:

m Twisted asymptotics

Qi ~usoo €E™eT T M e 7+ ={1,1,-1, 1},

Gluing conditions: B _
Qi(u) = (=1)'Qi(u).

m Donel
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AdS, in a nutshell

m We now turn to ABJM. Symmetry algebra ospg4. Two basic
representations

(#.9) (#.9)
Particle A (N, N) Particle B (N, N)

m Single-trace operators:

O=trWaWgWa... Wae{¢, ¥} Wae{d 9}
m Singelton partition functions
4vy
1=y

2wy Mz =1 = T

ZA = ZB =

(0) _ 1
4 Iog(l + \ﬁ) .
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What | will explain

m To Do:
m ldentify z in the QSC and twist the curve appropriately.
m Solve analytically at weak coupling.
m Go to strong coupling using numerics.
m Additional exercise: Twist the R-symmetry.

m | will explain how to do this in the next part.

m First: The outcome.
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Weak coupling results
m Use h for integrability coupling constant. Conjecture [Gromov.Sizov 14]

sinh(27h) 111 3 . 5
_ i TP h
o 3F (2,2,2,1,2, sinh“(27 ))
m At weak coupling we computed up to O(h®). Write
2}\3
Tu=TO 4+ TOR L TOR L Oh®), h=xr-— ”3 + OO,

First few values:

©_1 1 W _  v2-1
H 4|og(1+\/§) ' H Iog(1+\@) ’
@ _7./5_g_ i 1
T, =1vV2-8 4(1—1—2\@)L1((1+ﬁ)2)

iz (7 vap)
-2 (1 + 2\[2) X m '



Weak coupling results
m Use h for integrability coupling constant. Conjecture [Gromov.Sizov 14]
sinh(27h) 111 3 . 5

_ i TP h
B — F2 (2, 555 sinh®(2mr ))

m At weak coupling we computed up to O(h®). Write

m2)\3

Tu=T O+ TR+ TP +0(h%), h=x- 5 TO0%).
First few values:
©_1 1 W _  v2-1
H 4|og(1+\/§) ' H Iog(1+\@) ’
1
Lio(—L=)
S 2(142v2) x VDR

Iog(l + \/5)

m Agrees with tree-level and, up to a factor 2, with h? calculation in

[Papathanasiou,Spradlin 09']
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m The strong coupling have recently recieved interest [Harmark Wilhelm
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Strong Coupling Numerics

m The strong coupling have recently recieved interest [Harmark Wilhelm

'18;Urbach '22;Bigazzi,Canneti,Cotrone,(Miick) '22,('23)...].

m Can QSC provide input? Yes! We can go to strong coupling
numerically:

T

0.7

* Numerics
06
— Large A fit
05
— HAP

0.4 — AP

0.3

0.0 0.5 1.0 15 20 25

m Fitting the curve:

Ai 3 (0.0308+0.0004) 0.046 + 0.002
— - . -

T = 5 +87 T
22,/ oT A Az

Bl
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Strong coupling conjecture
m Can we "guess" an exact expression for the large h expansion?
m |dea: Draw inspiration from SUGRA and PP-wave. [pando ZayasVaman ‘02,
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Strong coupling conjecture

m Can we "guess" an exact expression for the large h expansion?

m |dea: Draw inspiration from SUGRA and PP-wave. [pando ZayasVaman ‘02,
Greene, Schalm, Shiu '03;G. Grignani, Orselli, Semenoff, Trancanelli '03; Urbach '22]

m Mix intuition with QSC: Conjecture for AdSs and AdS4: [sEMinahan, Thul

23)

AdSg1 1 d K : ;
T, +1 — _— — NOWN [Urbach '22,Maldacena (unpublished),]
H 27/ 20! T Sy

Conject d(d+1)—8d| d d—1)d 3
onjecture — +\/a ( +%\/8§7rog(2) —|—a’( Jrzz)gdé7r 1) +(9((a')2)

m Comparison with previous formula:

Teonjecture _ A i i B 0.03093... + 0.0461...
" 2% 8m A AL
numerics Ad i _ 0.0308 £ 0.0004 n 0.046 + 0.002 "
A X N

m First principle derivation? Validity beyond d = 3,47
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Basics of 0spg, Q-systems

m Intuition: The structure of the Q-system should reflect the

underlying 0spg4 Ssymmetry algebra.
detQa“ = detQa; =-1

Pa=Qap, Qr = Qq1, Qii Q%
A=1,...,6 I=1,...,5 a,i=1,...,4
506 Vector 505 vector Spinors

n Qa|,- and Q?|i are basic. Construct other functions from them

1 ij —ab A~ 1 —ij A
Pa="3 QxR Qpy Qi = (@) T Q)

Same procedure using oag, X1, to find Qu1, Qa1 Qajrs: as|1-
m P, and Q; have the same structure as in AdSs

P af

—2h 2h —




Bethe equations

m Bethe equations follows naturally from the bilinear expressions.

m Example:

4
2p

-1,
Q)2

Py=0

[
Q P, Q
Q1|1 22 P2 €12

Q[ZTQZ] 24 Q;\ 12

=-1,

2|2=0
Q@) ey,
Q@495

4
2 o
Q |1 Ql\l Q2|12

ng] Q;r|12

=1,
Q12=0

=-1
Q110

@ Aoy,
(@ -Aog,,

=1,
04‘1:0



Twisting the curve

m Recall: Hagedorn at h = 0 is controlled by the partition function,
character,



Twisting the curve

m Recall: Hagedorn at h = 0 is controlled by the partition function,
character,

2y =1,

m We need to find characters from QSC, this means twisting.



Twisting the curve

m Let us turn off the coupling h = 0 and take a twisted ansatz
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Twisting the curve

m Let us turn off the coupling h = 0 and take a twisted ansatz

Qafi = Ag) xHiWay =i, 1
Qa“ — Aa|i Xfiuoua yfiuu,- , 2

x={x1,x2, x5} y={y1 y2}
m It follows that

PA ZXIRU,

Qr >~

—iu

Y1



Twisting the curve

m Let us turn off the coupling h = 0 and take a twisted ansatz

) ) + + + ++
Qaji = Agppey 2, )L+ =— ) 14
Qa“ — Aa“Xfiuwa yfiuu,- , 2 -+ — ! 2 —+
- + -
X = {X1'X21X5} y= {}/1,}/2}
m It follows that
Pa = xi, Qr oy

m Trick to solve the Q-system: Consistency equations

U —ab
QA= 21,04 Qa| Qb|j

= %7, (0a)an (@) (Q%) ]




Characters from Q-functions

m To find the partition functions we construct bilinears again!
m Compact spin chains:

1 .. _ 1 1 1 1 1
iKuQ[jl]i(Qalj)[ Tt —t++—txu+t——pn———yp——
X1 X2 X3 N Y2

m Non-compact: (y1 = y»)
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Characters from Q-functions

m To find the partition functions we construct bilinears again!

m Compact spin chains:
1 . 1 1 1 1 1
*KUQ[azl]i (Qalj)[_z] =X+ tXet— A+t =y Y2 —
2 X1 X2 X3 n ¥

m Non-compact: (y1 = y»)

QR (@)Y =

(I-y
m Simplest case: Set y; ™ =y, M = eyl x, =1
e~ Uy du u 1 emuy—iu
N efﬂ'uyiu u2 U3 u2 e‘rruyfluu2 B 1
Qa|f — e—'lruyiuu w2 U e'lruy—iuu , y=e 2
efﬂ'uyiuu3 u4 u3 e‘rruyfiuu3



Turning on coupling

m We are now in the symmetric sector
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Turning on coupling
m We are now in the symmetric sector

m While Q,); are "basic" P4 have simpler analytic properties. Can

. . 1 _
parameterise P4 using Zhukovsky x + - = %

Parameters to fix! —~ - - 3
<X) — u
Pa Zn:—Ma AAT [ xHi=g
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m Find Q,;?
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Rewriting of P4

m Parameterise

Qapi = Q) + QN (B ) + o(hY),
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Then one finds
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Weak coupling algorithm
m Next we turn on a small coupling.
m Find Q,;?
Qi+ Pab ;fbc QK =0
Rewriting of P4

m Parameterise

Qai = Q%) + nQ{N (b)) + O(hY),

alj

Then one finds

by — (-1)

-
Different from N = 4 Known

(bj’)[Z] _ —IKJ,;KkI(( ) )+p(1) bC(Q( ))

cli

[ bf will be given in terms of

tn
.=, =y —— =1y y* 3.2
u nt Z(u+in)s y*y (32)
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m From h = 0 solution and parameterisation of P4 in terms of x we
can find the full Q-system.
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m At weak coupling Q-functions will be given by v and
ty

tM
D W
Slyeens S - -
O VR R (RS UAR

(3.3)
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Summary weak coupling

m From h = 0 solution and parameterisation of P4 in terms of x we
can find the full Q-system.

m At weak coupling Q-functions will be given by v and

tt t tes
Mk = - o ¢ (3.3)
SLieerSk 0§n1<z---<nk (u+ing)= (U4 ing)s

m This implies that T,(_,") in the end will be written in terms of
1

T,E,o),e arf) and

U
|—|51 ..... sk(tly Ce tk) = E W (34)
0<m<-<ng L "k

m Still many free parameters around, we need to fix them!
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Gluing conditions

m To find Ty we need to also consider QI. Recall:

Qf af—

——o
——o
——0o

——o

N

m Construct a lower-halfplane analytic Qy using parity:

e2mu 0 ° 0 0
0 —e?r 0 . 0
Qiu)y=1 0 0 e 2™ 0
0 0 0 e 2™ 0
0 0 0 0o -1

m Zeros are fixed by asymptotics and parity. Example:

]

~ Ju|
Q3 ~ysico € 27 Q3 ~ys_jo0 € 2T

’Qu(—u) (3.5)

(3.6)
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Quantisation and results
m Finally we can now fix all coefficients by demanding that

= regular Q- Q
u~0 ' Vu—2hy/u+2h

m This fixes Ty! For example

= regular.

u~0

(QI - C‘u)

(0) 1
T, = —— ~0.2836481643 . ..
H 4log(1+v2)

2—-1
Igl) = fi ~ 0.4699636663 . ..
Iog(l + ﬁ)

m We computed up to h®, rather long expressions, numerically
T?) = —2.542811207 . . T = 2177821058 . ..

T = —222.2096020 . ..



Explicit T},

O -

3 (48L|11< v )—48L|11(3+2f( +ﬂ)2)

+12v/2Liy

( f —45fL|2< 2) + 84Li, <m>
+36v/2Li3 ( v ) + 24Li3 ( )
el
+Lip (m) (4sf2uz (m) +18 (4 - 5\/5) log (1 + \/E))

' w +48v2log (1:+V2) Ui ((1 +1ﬂ>“)

+24v2log (1 + ﬁ) Liz <(1+71f2)2> +16log (1 I fz) Li» (m)

18fL|4( ) 12Lig (%)
(1+v2)° (1+v2) B
A T+v2) " eg 0rv2) +45v2 66+35\/§|og(1+ ﬁ)

—52log (1 n ﬁ))

+48v2log




Numerics

] NumeriCSZ Use the N =4 algo”thm Of [Gromov, Levkovich-Maslyuk,Sizov '15].

m Procedure: Minimise the gluing condition.

m We can verify weak-coupling

/

* Numerics

« Numerics
— Large A fit
— HAP

04 — hAP
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Turning on fugacities, Part 1
m Generalisations? Turn on additional R-symmetry fugacities.
m For simplicity: Stay in the symmetric sector. Order h° is immediate
za(yn)? = 1 with
Yy L
ZA = ZB = (1_ )2X4, y=e 2T
m Next order? Can be done following (spradiin, Volovich 04’ Papathanasiou Spradiin "09]
Z—tre B —¢r e—ﬁ(Do+h2D2)+O(h4) .

T,Sl) depends on Dj:
T
70 % (D2)y,gveeva| o (3.7)
H Y=YH

m Computation of (D3)
)= Mixx, Va®@Ve®Va=aRV,. (38)

X_] Obtainable from [Dolan "08] and M_] from [Papathanasiou ,Spradlin '09]



Turning on fugacities, Part 2

m Result:
i 4<y£,°)>2

(0)

X3)

7O (1+y9)2a-

ﬁ 14+ x,5)( ()—l—xa)(l—i-y,_,
)5

a=1 Xa
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m Result:
TP 4(y;,°>)2 ﬁ 1+ %)Y + xa)(l +y9x,)

7O (1+y9)2a-

Xa
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Turning on fugacities, Part 2

m Result:
Ty 4<y,S°))2 ﬁ(lm ”+xa)(1+yﬁ,)xa>

TO @+ y®)2a -

Xa

m To obtain the same from QSC we turn on twists: xi, x.

m Twisting R-symmetry doesn't change the gluing matrix. Everything
keeps working!

m Slow to compute with undetermined fugacities... For numerical
values we find a perfect match!
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Conclusions

m The Quantum Spectral Curve is useful not only for AdSs but beyond.
m Obtained weak coupling expansion for Ty in AdSs up to O(h®)

m Numerical prediction for strong coupling expansion + Conjecture for
exact expression:

1
A\4 1 3
T”‘(z) PN

1 1
3-6log(2) (A) ¢ 165 [A) 2 s
2 ooeld) (A A N
T <2> +5127r2<2> o0

m Included R-symmetry fugacities and matched to order O(h?) (Also
works in AdSs)




Outlook

m AdSs using QSC or TBA? Inclusion of NSNS-flux?

m Strong coupling calculations with additional fugacities. (Work in
progress)

m Twisting the ABJM curve should be useful for

| | WiISOn “nes [Correa, Giraldo-Rivera,Lagares,’23]
m Study various deformations «, B ... [ChenLiu,wu,16]

m More general ABJM questions: Structure constants?

[Basso, Georgoudis, Klemenchuk Sueiro '22;Bercini,Homrich,Vieira '22]



Thank you

Thank you
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