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Motivation

• Integrable spin chains are a useful tool in
studying the spectrum of planar gauge theory
• The primary examples are maximally supersymmetric:
• 4d N = 4 SYM: One loop↔ XXX Heisenberg chain [Minahan, Zarembo ’02]
• 3d N = 6 ABJM theory: Two loops↔ Alternating chain [Minahan, Zarembo ’09]

• Some marginal deformations are integrable e.g. β-deformation of N = 4 SYM
• How about more general planar QFT’s in four dimensions? What types of spin

chains do we expect?
• We need the dilatation operator to be part of the symmetry algebra⇒

Conformal Field Theory
• A very large class of CFT’s can be obtained by orbifolding the N = 4 theory

and then marginally deforming
• In this talk I will focus mainly on N = 2 SCFT’s



Outline

• Review of the Z2 orbifold SCFT↔ dynamical spin chains

• Coordinate Bethe ansatz for dynamical chains

• Quantum symmetries for orbifold theories

• Interpretation as RSOS models



Z2 orbifold of N = 4 SYM

• Start with N = 4 SYM with SU(2N) gauge group

• Project (V ,X ,Y ,Z )→ (V ,−X ,−Y ,Z ) in R-symmetry space

• Project by [· · · ]→ γ[· · · ]γ in colour space, where

γ =

(
IN×N 0

0 −IN×N

)

• End up with N = 2 SYM with SU(N)1 × SU(N)2 gauge group

Z =

(
Z11 0
0 Z22

)
, X =

(
0 X12

X21 0

)
, Y =

(
0 Y12

Y21 0

)

• Z ’s adjoints, X ,Y bifundamentals



Z2 orbifold of N = 4 SYM

• Represent using a quiver diagram:

1 2

X12

X21

Y21

Y12Z11 Z22

• Superpotential: WN=4 = igTr(X [Y ,Z ])→

WN=2 = ig (Tr2(Y21Z11X12 − X21Z11Y12)− Tr1(X12Z22Y21 − Y12Z22X21))

• The Zk orbifold theory is integrable [Beisert,Roiban ’05]

• More general ADE orbifolds [Solovyov ’07]



Marginally deformed orbifold
• Move away from the orbifold point: g1 6= g2

W = ig1 Tr2(Y21Z11X12 − X21Z11Y12)− ig2 Tr1(X12Z22Y21 − Y12Z22X21)

• Preserves N = 2 supersymmetry

• Studied in detail in [Gadde,Pomoni,Rastelli ’10].

• E.g. X magnons in Z -vacuum:

· · ·Z11Z11

p1→
X12Z22Z22 · · ·Z22

p2→
X21Z11Z11 · · ·Z11

p3→
X12Z22Z22 · · ·

• The S-matrix for X12X21 scattering is XXZ-like

Sκ(p1,p2) = −1− 2κeip1 + ei(p1+p2)

1− 2κeip2 + ei(p1+p2)
where κ =

g2

g1



Marginally deformed orbifold

• For X21X12 scattering we have Sκ → S1/κ

• The YBE is not satisfied!

SκS1/κSκ 6= S1/κSκS1/κ

• Conclusion was that the deformed theory is not integrable

• We want to revisit this by better understanding the spin chain and its algebraic
structure

• Will look separately at the unbroken SU(2) sector made up of X ,Y fields and
the “SU(2)-like” sector made up of X ,Z fields



XY sector: Diagrams

• F-term contributions to the Hamiltonian

X12 Y21

X12 Y21

g2
1

X12 Y21

Y12 X21

−g2
1

Y21 X12

Y21 X12

g2
2

Y21 X12

X21 Y12

−g2
2

Y12 X21

Y12 X21

g2
1

Y12 X21

X12 Y21

−g2
1

X21 Y12

X21 Y12

g2
2

X21 Y12

Y21 X12

−g2
2

• Will rescale by g1g2 and define κ = g2/g1.



XY sector: Hamiltonian
• N = 2 picture

H`,`+1 =



0 0 0 0 0 0 0 0
0 κ−1 −κ−1 0 0 0 0 0
0 −κ−1 κ−1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 κ −κ 0
0 0 0 0 0 −κ κ 0
0 0 0 0 0 0 0 0


on:



X12X21
X12Y21
Y12X21
Y12Y21
X21X12
X21Y12
Y21X12
Y21Y12


• “Dynamical N = 4” picture

H1 =


0 0 0 0
0 κ−1 −κ−1 0
0 −κ−1 κ−1 0
0 0 0 0

 , H2 =


0 0 0 0
0 κ −κ 0
0 −κ κ 0
0 0 0 0

on:


XX
XY
YX
YY


i



XZ sector: Diagrams

• F-term contributions to the Hamiltonian

Z11 X12

Z11 X12

g2
1

Z11 X12

X12 Z22

−g1g2

X12 Z22

X12 Z22

g2
2

X12 Z22

Z11 X12

−g1g2

Z22 X21

Z22 X21

g2
2

Z22 X21

X21 Z11

−g1g2

X21 Z11

X21 Z11

g2
1

X21 Z11

Z22 X21

−g1g2

• Will again rescale by g1g2 and define κ = g2/g1.



XZ sector: Hamiltonian
• N = 2 picture

Hi,i+1 =



0 0 0 0 0 0 0 0
0 κ −1 0 0 0 0 0
0 −1 κ−1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 κ−1 −1 0
0 0 0 0 0 −1 κ 0
0 0 0 0 0 0 0 0


on:



X12X21
X12Z22
Z11X12
Z11Z11
X21X12
X21Z11
Z22X21
Z22Z22


.

• “Dynamical N = 4” picture

H1 =


0 0 0 0
0 κ −1 0
0 −1 κ−1 0
0 0 0 0

 ,H2 =


0 0 0 0
0 κ−1 −1 0
0 −1 κ 0
0 0 0 0

 on:


XX
XZ
ZX
ZZ


i



Dynamical spin chains

• The XY chain is strictly alternating:

H2 H1 H2 H1 H2 H1 H2

2s 2s+1 2s+2 2s+3 2s+4 2s+5 2s+6 2s+7

• The XZ chain is “dynamical”: The Hamiltonian depends on the number of X ’s
crossed.

Z Z X X X Z X ZHλ Hλ Hλ Hλ′ Hλ Hλ′ Hλ′

2s 2s+1 2s+2 2s+3 2s+4 2s+5 2s+6 2s+7

• Introduced a “dynamical” parameter taking two values λ, λ′ (more later)
• λ↔ λ′ when crossing X ,Y , unchanged when crossing Z



Alternating chains

• There is extensive condensed-matter literature on
alternating chains, though mostly for the antiferromagnetic case
• A ferromagnetic alternating bond example is in [Sirker et al. ’08]

• Alternating spin chains are mathematically very similar
• E.g. the bimetallic chain MnNi(NO2)4(en)2(en = ethylenediamide)

[Feyerherm, Mathonière, Kahn, J. Phys. Condens. Matter 13, 2639 (2001)]

• Have been studied with various techniques such as the recursion method
[Viswanath,Müller ’94], also long-wavelength approximations [Huang et al. ’91]



Outline

• Review of the Z2 orbifold SCFT↔ dynamical spin chains

• Coordinate Bethe ansatz for dynamical chains

• Quantum symmetries for orbifold theories

• Interpretation as RSOS models



XY sector: Spectrum

• Explicitly diagonalise the Hamiltonian for short chains
L=6 alternating XXX chain

0.9 0.8 0.7 0.6 0.5 0.4

κ

2

4
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8

10
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14

16

E

• Red: 3 magnons, Blue: 2 magnons, Green: 1 magnon
• Can we reproduce this from a Bethe ansatz?



XY sector: One magnon
• XXX case (κ = 1): Eigenstate H |p 〉 = E(p) |p 〉 if

|p 〉 =
∑
`

eip` |`〉 with E(p) = 2− 2 cos(p)

• Alternating XXX case (κ 6= 1):

|p〉 =
∑
`∈2Z

Aeeip`|`〉+
∑

`∈2Z+1

Aoeip`|`〉

with

r(p;κ) =
Ao(p)

Ae(p)
=

eip
√

1 + κ2e−2ip
√

1 + κ2e2ip

• Dispersion relation:

E(p) =
1
κ

+ κ± 1
κ

√
(1 + κ2)2 − 4κ2 sin2 p

• Naturally uniformised by elliptic functions



XY sector: Two magnons

• Split equations into non-interacting and interacting
• First solve the non-interacting equations
• Normally, the interacting equations require us to add a second term with

swapped momenta

|p1,p2 〉 = A(p1,p2)ei(`1p1+`2p2) + A(p2,p1)ei(`1p2+`2p1)

• The ratio gives the S-matrix

S =
A(p2,p1)

A(p1,p2)

• Our case is more complicated!
• Similar to chains studied in [ Medved, Southern, Lavis ’91]

• I will focus on the XY sector, but the XZ sector is similar



XY sector: Additional momenta
• Given (p1,p2) need to add all other solutions

allowed by momentum and energy conservation
• For XXX that is only (p2,p1)

• Here we also have (k1, k2), (k2, k1)

p1 + p2 = k1 + k2 = K , E(p1) + E(p2) = E(k1) + E(k2) = E2

where

k1,2 =
K
2
± π

2
∓ 1

2
arccos

(
cos(p1 − p2) +

(E2 − 2(κ+ 1/κ))2 cos K
2 sin2 K

)

• k ’s are not just permutations of the p’s
• Violates Sutherland’s criterion for quantum integrability
• Can be thought of as “discrete diffractive scattering” [Bibikov ’16]⇒ Can still

have solvability



XY sector: Closed chains
• Can write a Bethe ansatz equation for two magnons
• E.g. Untwisted sector:

eiLp1 = −a(p1,p2) + x̄(k1, k2)b(p1,p2)

a(p2,p1) + x̄(k1, k2)b(p2,p1)
.

with
x̄(k1, k2) = −a(k1, k2) + a(k2, k1)eiLk1

b(k1, k2) + b(k2, k1)eiLk1
,

where
a(p1,p2, κ) = ei(p1+p2) − 2eip1 r(p2, κ) + r(p1, κ)r(p2, κ) ,

b(p1,p2, κ) = 1− 2eip1 r(p1, κ) + r(p1, κ)r(p2, κ)ei(p1+p2)

• This is an algebraic equation in the p’s
• Energies agree with explicit diagonalisation
• Extending to three or more magnons is challenging



3 magnons in the Z -vacuum

• Apply the above insights to the Z -vacuum

• Here the dispersion relation is much simpler: E = κ+ κ−1 − 2 cos p
• 1,2 magnons solved in [Gadde,Pomoni,Rastelli ’10], 3-magnon was not known
• Can make progress in special kinematic limits, e.g: p1 , p2 + p3 = π

• Introduce additional momenta k1 = p1, k2 + k3 = π

• {p1,p2, k3} 3-magnon problem can be solved [D. Bozkurt, E. Pomoni, ongoing]

• Interesting quasi-Hopf-like structure (Φ123 is a coassociator)

S12Φ312S13Φ−1
132S23Φ123 = Φ321S23Φ−1

231S13Φ213S12

• Can be worthwhile to study non-associative scattering more generally



Quasi-Hopf YBE

1 2 3

3 2 1

R12

Φ213

R13

Φ−1
231

R23

Φ321

=

1 2 3

3 2 1

Φ123

R23

Φ−1
132

R13

Φ312

R12

Φ321R23Φ−1
231R13Φ213R12 = R12Φ312R13Φ−1

132R23Φ123



Non-abelian orbifolds
• Simplest case: Binary dihedral group D̂4

5

1 2

34

Z55

Z11 Z22

Z44 Z33

Y51

X15 X52

Y25

X35

Y53

X54

Y45

• D̂4 orbifold of SU(8N)

W = 2g1Tr1(Z11X15Y51)− 2g2Tr2(Z22Y25X52) + 2g3Tr3(Z33X35Y53)− 2g4Tr4(Z44Y45X54)

+ g5Tr5 (Z55(X52Y25 + X54Y45 − Y51X15 − Y53X35))

• 13 fields, 4 ratios of coupling constants κi = gi/g5



The D̂4 spin chain

• Dynamical spin chain of quite peculiar type

• No X or Y vacua, only Z vacua. No nontrivial SU(2) sectors.

• Fields meeting at node 5 are purely reflected:

H(X15Y51) = 4κ2
1X15Y51

• Fields meeting at the outer nodes scatter nontrivially:

H(Y51X15) =
1
2

(Y51X15 + Y53X35 − X52Y25 − X54Y45)

• So far: coordinate Bethe ansatz for 2-magnon excitations around the Z
vacuum [with J. Bath, ongoing].



Outline

• Review of the Z2 orbifold SCFT↔ dynamical spin chains

• Coordinate Bethe ansatz for dynamical chains

• Quantum symmetries for orbifold theories

• Interpretation as RSOS models



Quantum Symmetry
[work with E. Andriolo, H. Bertle, E. Pomoni and X. Zhang]

• Let us go back to the Z2 case

1 2

X12

X21

Y21
Y12Z11 Z22

• Naively, SU(4)R → SU(2)i=1,2
L × SU(2)i=3,4

R × U(1)

• Eight broken generators: R1
3 , R1

4 , R2
3 , R2

4 + conjugates

• Relate fields which now belong to different SU(N)× SU(N) representations

• Claim: Can upgrade them to true generators in a quantum version of SU(4)R

• E.g. want to write: R3
2X a

â = Z a
a , R2

3Z a
a = X a

â



Quantum Symmetry
• Gauge indices of all fields to the right need to be flipped

· · ·Z11X12Z22Y21X12 · · ·
∆(σXZ

− )
−→ · · ·Z11Z11Z11Y12X21 · · ·

• Can achieve this with a suitable coproduct⇒ Quantum algebra

• Structure is that of a quantum groupoid [Lu ’96, Xu ’99]

• Path groupoid: Like a group, but not all compositions of elements are allowed.
The allowed paths are those given by the quiver.

• Unbroken generators have the usual algebraic coproduct ∆o(a) = I⊗ a + a⊗ I

• However, for the broken generators we define:

∆o(a) = I ⊗ a + a⊗ γ , where γ(Xi) = Xi+1

• To complete the algebra we also need ∆(γ) = γ ⊗ γ



Twist
• Can move away from the orbifold point by a Drinfeld twist

∆(a) = F∆o(a)F−1

• We require that ∆ preserves the F -term relations:

∆(σXZ
± ) .

(
X12Z22 −

1
κ

Z11X12

)
= 0

• A suitable twist is:

F = I ⊗ κ−
s
2 where s =

{
1 if the gauge index is 1
−1 if the gauge index is 2

• Recall that γ flips the gauge index⇒ s ◦ γ = −γ ◦ s



Twisted coproduct
• Twisting the unbroken generators has no effect:

∆(σ3) = (I ⊗ κ−
s
2 )(I ⊗ σ3 + σ3 ⊗ I)(I ⊗ κ

s
2 ) = (I ⊗ σ3 + σ3 ⊗ I)

• But on the broken generators we find:

∆(σ±) = (I ⊗ κ−
s
2 )(I ⊗ σ± + σ± ⊗ γ)(I ⊗ κ

s
2 ) = (I ⊗ σ± + σ± ⊗ γκs)

• Defining K = γκs, and also ∆o(s) = s ⊗ I, our final coproducts are:

∆(σ±) = I ⊗ σ± + σ± ⊗ K , ∆(K ) = K ⊗ K

• K 2 = 1 ⇒ Compatibility of the coproduct with the algebra product

∆([σ+, σ−]) = [∆(σ+),∆(σ−)]

• The SU(2) commutation relations are not deformed, unlike in Uq(sl(2))



Iterated coproduct
• The twist satisfies the cocycle condition

F12 ◦ (∆o ⊗ id)(F ) = F23 ◦ (id⊗∆o)(F ) =: F(3)

giving

∆(3)(a) = F(3)∆
(3)
o (a)F−1

(3) = I ⊗ I ⊗ a + I ⊗ a⊗ K + a⊗ K ⊗ K

• Similarly we find the L-site coproduct for the broken/revived generators:

∆(L)(a) =
∑

i

· · · I ⊗ I ⊗ ai ⊗ K ⊗ K · · ·

• By construction, the coproduct preserves the quantum plane relations

• The superpotential is now invariant under all SU(3) generators

∆(3)(σXY
±,3) .W = ∆(3)(σXZ

±,3) .W = ∆(3)(σYZ
±,3) .W = 0



Is this useful?
• The Hamiltonian does not commute with ∆(a) (for the broken a’s).
• So we do not expect κ-deformed multiplets

to map 1-1 to eigenstates of the Hamiltonian
• Let us make an analogy to the Algebraic Bethe Ansatz and assume there

exists an R-matrix R(u), depending on a spectral parameter u
• Our twist is in the quantum plane limit (u →∞ for rational integrable models)
• The full twist will also be u-dependent, such that

R(u, κ) = F (u)21R(u, κ=1)F (u)−1
12

• So we expect a different twist/coproduct for each u (i.e. each eigenvalue of H)

• For BPS states, it turns out that ∆BPS(a, κ) = ∆(a,1/κ).

• Agrees with the direct diagonalisation in [Gadde,Pomoni,Rastelli ’10]



Example: BPS spectrum
X12X21X12X21

X12X21X12Z22 + κX12X21Z11X12 + X12Z22X21X12 + κZ11X12X21X12

κX12X21Z11Z11 + X12Z22X21Z11 + 1
κ

X12Z22Z22X21 + κZ11X12X21Z11 + Z11X12Z22X21 + κZ11Z11X12X21

∆BPS(σXZ
− )

∆BPS(σXZ
− )

· · ·

• To get a closed eigenstate, add the state with {1↔ 2, κ↔ κ−1} and impose
cyclicity. We find the following BPS state:

κTr1(X12X21Z11Z11) + Tr1(X12Z22X21Z11) +
1
κ

Tr1(X12Z22Z22X21)

• This state is not protected by N = 2 supersymmetry. The fact that it still has
E = 0 is a consequence of the quantum symmetry



Twisted SU(4) groupoid

• We have extended this to multiplets in the full deformed SU(4) sector
[Andriolo, Bertle, Pomoni, Zhang, KZ, to appear]

• Mainly focused on L = 2 (20′,15) and L = 3 (50, 10) etc.
• The non-BPS multiplets of the closed Hamiltonian at κ = 1 break up into

several multiplets as κ 6= 1
• Main idea: Can partially untwist the Hamiltonian to make the open multiplets

agree with those at the orbifold point, while leaving the closed spectrum
unchanged. Schematically:

R′(u, κ) = G(u)21R(u, κ)G(u)−1
12 ⇒ H ′open = Hopen + δHopen (but H ′c = Hc)

• In this basis the splitting is only due to the closed boundary conditions
• First step towards constructing R(u)



Outline

• Review of the Z2 orbifold SCFT↔ dynamical spin chains

• Coordinate Bethe ansatz for dynamical chains

• Quantum symmetries for orbifold theories

• Interpretation as RSOS models



RSOS models

a b

cd
u = W

(
d c
a b

∣∣∣u) .

• Lattice models where the Boltzmann weights depend on labels around each
face (called heights)
• Introduced in [Andrews, Baxter, Forrester ’84]

• Original model related to elliptic XYZ spin chain

W
(

a a + 1
a + 1 a + 2

∣∣∣u) = W
(

a a− 1
a− 1 a− 2

∣∣∣u) =
θ1(2η − u)

θ1(2η)

W
(

a a + 1
a− 1 a

∣∣∣u) = W
(

a a− 1
a + 1 a

∣∣∣u) =

√
θ1(2η(a− 1) + w0)θ1(2η(a + 1) + w0)

θ1(2ηa + w0)

θ1(u)

θ1(2η)

W
(

a a + 1
a + 1 a

∣∣∣u) =
θ1(2ηa + w0 + u)

θ1(2ηa + w0)
, W

(
a a− 1

a− 1 a

∣∣∣u) =
θ1(2ηa + w0 − u)

θ1(2ηa + w0)

• Neighbouring heights related by |a− b| = 1.



RSOS models

• The ABF weights satisfy the Star-Triangle relation

∑
g

W
(

f g
a b

∣∣∣z − w
)

W
(

g d
b c

∣∣∣z)W
(

f e
g d

∣∣∣w)

=
∑

g
W
(

a g
b c

∣∣∣w)W
(

f e
a g

∣∣∣z)W
(

e d
g c

∣∣∣z − w
)
,

or pictorially:

=a

b c

d

ef

g a

b c

d

ef

gz−w

z

w

z−w

w

z

• Guarantees [T (u),T (u′)] = 0 ⇒ integrability of the model



Adjacency diagrams

• SOS: Range of heights is unrestricted
• RSOS: The heights take values in an interval, a = 1, . . . ,N
• More generally can draw an adjacency/incidence diagram
• Any ADE Dynkin diagram can be the incidence diagram for a critical RSOS

model [Pasquier ’86]

• Generalisations [Di Francesco, Zuber ’90, Roche ’90, Fendley,Ginparg ’89]

• Cyclic SOS models [Pearce, Seaton ’88, ’89, Kuniba, Yajima ’88]: amax + 1 = a1

• Examples: A3 (Ising model), A(1)
2

1 2 3
1 2

3



Dilute RSOS models
• Can relax the |a− b| = 1 condition to |a− b| ≤ 1

• Additional Boltzmann weights

W
(

d d ± 1
d ± 1 d ± 1

∣∣∣u) ,W
(

d d
d d ± 1

∣∣∣u) ,W
(

d d ± 1
d d

∣∣∣u) ,W
(

d d
d ± 1 d

∣∣∣u) ,

W
(

d d
d ± 1 d ± 1

∣∣∣u) ,W
(

d d ± 1
d d ± 1

∣∣∣u) ,W
(

d d
d d

∣∣∣u) .

• Such models are called “dilute” [Nienhuis ’90,Kostov ’91, Warnaar, Nienhuis, Seaton
’92, Roche ’92, Warnaar ’93, Warnaar, Pearce, Seaton, Nienhuis ’94, Behrend, Pearce ’97]

• Notation comes through the link to loop models{
, , , , , , , ,

}

• “Domain walls” separating different values of d



Face-vertex map
• RSOS and vertex models can be mapped to each other
• Graphically:

a

b

c

d u =

k l

j i

λ

u

= R(u, λ)ij
kl

• For SU(2) ABF case introduced by [Felder ’94]

• The R-matrix depends on dynamical parameter λ = −2ηd

• Satisfies a dynamical Yang-Baxter equation

R23(u2 − u3;λ)R13(u1 − u3;λ+ 2ηh(2))R12(u1 − u2;λ)

= R12(u1 − u2;λ+ 2ηh(3))R13(u1 − u3;λ)R23(u2 − u3;λ+ 2ηh(1)) .



The dynamical YBE
• λ is shifted every time a line is crossed

R i j
k l(u;λ) =

k l

j i

λ i
λ

λ+2ηhi

• Dynamical Yang-Baxter equation:

1
2

3

λ

λ+2ηh(3)

λ+2η
∑

i=2,3
h(i)

λ+2ηh(1)
λ+2η

∑
i=1,2

h(i)

λ+2η
∑

i h(i)λ′ =

1
2

3

λ

λ+2ηh(3)

λ+2η
∑
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• See also [Yagi ’15,17] for other applications to quiver theories



Relation to the Z2 quiver theory

• Our claim: The SU(3) sector of the interpolating theory
is the vertex model corresponding to a dilute CSOS model

• The dynamical parameter/left height tracks the gauge coupling

• Crossing X ,Y : λ→ λ± 2η

• Crossing Z : λ unchanged (dilute)

• λ ∼ λ± 4η (cyclic)

• In the RSOS model the cyclicity means that the weights are invariant under
d → d ± 2



Dynamical 15-vertex model
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XXX spin chain as a dilute CSOS model

X Y

Z

1

2

3

• Need 3 heights d = 1,2,3, identify 0 ∼ 3,4 ∼ 1
• Use standard SU(3) Heisenberg R-matrix

R(u) =
1

u + i
(uI + iP)

• Non-dynamical: R(u) doesn’t depend on d .
• Star-triangle relation is satisfied
• We have a 3-1 map from the XXX spin chain to a face model



Extension to a 27-vertex model

• The construction naturally allows 12 more vertices

2

1

1

1 u =

X Y

Z Z

,

3

1

2

3 u =

Y Z

X X

+ 10 more

• These interactions are not allowed by N = 2,4 SUSY
• Present in N = 1 SCFT’s (e.g. Leigh-Strassler)

WLS = κTr
(

X [Y ,Z ]q +
h
3
(
(X )3 + (Y )3 + (Z )3))

• Quasi-Hopf symmetry [Dlamini-KZ ’19]: Expect a quasi-Hopf version of
star-triangle relation



Quasi-Hopf star-triangle relation
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(Last Φ on left and first Φ on right not shown)



Z2 orbifold as a dilute CSOS model

1

2

3

6 5

4

• We define an RSOS/dynamical 15-vertex model as above

• Now the allowed heights are d = 1, . . . ,6

• Dynamical: R(u, κ) for d odd, R(u,1/κ) for d even

• Expect elliptic dependence on u

• Can the star-triangle relation be satisfied with this input?



Generalisations

• For Zk orbifolds, we just need 3k heights

• Every k heights have equal Boltzmann weights

• For N = 1 theories, we can extend to a 19-vertex model

d+1

d

d

d u =

X Y

Z Z

,
d

d

d+1

d u =

Z Z

X Y

,
d−1

d

d

d u =

Y X

Z Z

,
d

d

d−1

d u =

Z Z

Y X

• Vertices such as XZ → YY are not possible for k > 1

• Conjecture: Spin chains for a large class of N = 1 quiver theories are
described by dynamical 19-vertex models, while those for N = 2 quiver
theories are described by dynamical 15-vertex models



Summary

• Spin chains for N = 2 orbifold theories are dynamical
• Magnon scattering can get complicated and intricate
• Showed the 2-magnon CBA for the X and Z vacuum
• The 3-magnon CBA for the Z vacuum is tractable
• The D̂4 orbifold theory brings in even more unusual features
• The naively broken SU(4)R generators are not lost but can be upgraded to

generators of a quantum groupoid
• We have been studying short chains with the goal of better understanding the

implications of this quantum symmetry
• There is a link between supersymmetric gauge theories and dilute RSOS

models which we are starting to uncover



Outlook
• Unrestricted three-magnon problem, also for X vacuum

• Integrability? Solvability?

• Fully understand the quantum group symmetries, extend to full PSU(2,2|4)

• Clarify links to elliptic quantum groups (Felder)

• Find Boltzmann weights realising the required adjacency graphs

• Generalise to Zk and more general ADE quivers (expect higher-genus theta
functions to appear)

• Higher loops? Supergravity side?

• Lessons from link to RSOS models? How general is the mapping of gauge
theories to statistical models?

Thanks for your attention!


