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Motivation

Integrable spin chains are a useful tool in
studying the spectrum of planar gauge theory

The primary examples are maximally supersymmetric:
e 4d ' = 4 SYM: One loop +» XXX Heisenberg chain [Minahan, Zarembo '02]

e 3d N = 6 ABJM theory: Two loops <+ Alternating chain [Minahan, Zarembo '09]
Some marginal deformations are integrable e.g. 3-deformation of N' =4 SYM

How about more general planar QFT’s in four dimensions? What types of spin
chains do we expect?

We need the dilatation operator to be part of the symmetry algebra =
Conformal Field Theory

A very large class of CFT’s can be obtained by orbifolding the AV = 4 theory
and then marginally deforming

In this talk | will focus mainly on N' =2 SCFT’s



Outline

Review of the Z, orbifold SCFT <« dynamical spin chains

Coordinate Bethe ansatz for dynamical chains

Quantum symmetries for orbifold theories

Interpretation as RSOS models



orbifold of V' =4 SYM

Start with A/ = 4 SYM with SU(2N) gauge group
Project (V, X, Y,Z) — (V,—X,-Y,Z) in R-symmetry space

Projectby [---] — ~[ - -]y in colour space, where

| Inxn 0 >
7_( 0  —Inxn

End up with /' = 2 SYM with SU(N); x SU(N), gauge group
Zy1 0 > < 0 X > < 0

7 = X = .Y =
( 0 Z» )’ X1 0 Y4

Z’s adjoints, X, Y bifundamentals

Yi2
0

)



Z orbifold of N' = 4 SYM

e Represent using a quiver diagram:

e Superpotential:  Wn_4 = igTr(X[Y,Z]) —

Whi=2 = ig (Tra(Y21Z11 X12 — X21Z11 Y12) — Tr1(Xi12Z22 Yo1 — Y1222 X51))

e The Z orbifold theory is integrable [Beisert,Roiban *05]

e More general ADE orbifolds [Solovyov '07]



Marginally deformed orbifold

e Move away from the orbifold point: g1 # g»
W = igy Tra(Ya1Z11 X12 — X21Z11 Yi2) — i92 Tr(X122Z22 Yo1 — Y12Z22X21)

Preserves N' = 2 supersymmetry

Studied in detail in [Gadde,Pomoni,Rastelli *10].

E.g. X magnons in Z-vacuum:

P Pz p

o L1111 XiadopLop - - - Zop Xo1 211241 - - - Z11 X12Zo2 L0 - - -

The S-matrix for X2 X>1 scattering is XXZ-like
92

1 — 2xePr 4 gi(pPi+p2) h
1 _2nel 1 gilpiips)  WNEME H= g1

Sk(p1,p2) =



Marginally deformed orbifold

e For X»1 Xi2 scattering we have S, — Sy /,;

e The YBE is not satisfied!

5:51/rSs # S1/xSxSt

Conclusion was that the deformed theory is not integrable

We want to revisit this by better understanding the spin chain and its algebraic
structure

Will look separately at the unbroken SU(2) sector made up of X, Y fields and
the “SU(2)-like” sector made up of X, Z fields



XY sector: Diagrams

e F-term contributions to the Hamiltonian

e Will rescale by g19» and define k = g»/g;.



XY sector: Hamiltonian
e N = 2 picture
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XZ sector: Diagrams

e F-term contributions to the Hamiltonian

Zi Xz Xz L2 Xig e
>\"\,g12 ><Q1 g2 >: E:,QS
2y Xi2  Zi Xi2 X12/ *Zoo
Zog  Xor Xof Zi1 Xo 2y
\::,: ég *I;,<g1 g X<g12
22 "Xoq 2,2, D6 0% 2y

e Will again rescale by g1g» and define x = g»/g;.



XZ sector: Hamiltonian
e N = 2 picture
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0k -1 00 0 O
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Dynamical spin chains
e The XY chain is strictly alternating:

Hz 'H1 7‘[2 7‘[1 7'[2 H1 HZ
2s 25+1 2542 25+3 2s5+4 2545 25+6 2s5+7

e The XZ chain is “dynamical”: The Hamiltonian depends on the number of X’s
crossed.

z Hx z Hx x Hx x Hyv x Hx z Hyv x Hy 2z

2s 25+1 2542 2s5+3 25+4 25+5 25+6 2s5+7

e Introduced a “dynamical” parameter taking two values A, \’ (more later)
e )\ + X when crossing X, Y, unchanged when crossing Z



Alternating chains

e There is extensive condensed-matter literature on
alternating chains, though mostly for the antiferromagnetic case

A ferromagnetic alternating bond example is in [Sirker et al. ’08]
Alternating spin chains are mathematically very similar
E.g. the bimetallic chain MnNi(NO;)4(en),(en = ethylenediamide)

® Mn
i

I+ 1a g1 2

[Feyerherm, Mathoniére, Kahn, J. Phys. Condens. Matter 13, 2639 (2001)]

Have been studied with various techniques such as the recursion method
[Viswanath,Mller '94], also long-wavelength approximations [Huang et al. *91]



Outline

Coordinate Bethe ansatz for dynamical chains

Quantum symmetries for orbifold theories

Interpretation as RSOS models



XY sector: Spectrum

e Explicitly diagonalise the Hamiltonian for short chains

L=6 alternating XXX chain

12
m/—//
8

e Red: 3 magnons, Blue: 2 magnons, Green: 1 magnon
e Can we reproduce this from a Bethe ansatz?



XY sector: One magnon
e XXX case (k = 1): Eigenstate H |p) = E(p) |p) if
p)=>_eP'|t) with E(p)=2—2cos(p)
e Alternating XXX case ( ;é 1):

=3 AP+ > AeP)
Le2 0e2Z+1
with . :
Hiorad) = Ao(p) _ ePV1+ nzefZ'P
’ Ae(p) V1 + r2e2P

e Dispersion relation:

1 1 .
E(p) = ;—H;i E\/U + K2)2 — 4K2sin? p

¢ Naturally uniformised by elliptic functions



XY sector: Two magnhons

Split equations into non-interacting and interacting
First solve the non-interacting equations

Normally, the interacting equations require us to add a second term with
swapped momenta

The ratio gives the S-matrix

A(p2, p1)
A(p1,p2)

Our case is more complicated!
Similar to chains studied in [ Medved, Southern, Lavis '91]
o | will focus on the XY sector, but the XZ sector is similar



XY sector: Additional momenta

Given (p1, p2) need to add all other solutions
allowed by momentum and energy conservation
For XXX that is only (p2, p1)

Here we also have (kiq, k), (ko, k1)

pi+p2=k +k =K, E(pi)+E(p)=E(k)+ E(k) = E2
where

K 1
kio= =~ =+ i F — arccos (cos(p1 —p2) +

2 2"2 2sin’ K

(E> — 2(rk +1/k))? cos K)
k’s are not just permutations of the p’s
Violates Sutherland’s criterion for quantum integrability

Can be thought of as “discrete diffractive scattering” [Bibikov '16] = Can still
have solvability



XY sector: Closed chains

e Can write a Bethe ansatz equation for two magnons
e E.g. Untwisted sector:

b _ _a(p1, p2) + X(ki, k2)b(p1, P2)
a(pz, p1) + X(ki, k2)b(p2, p1) -

with .
a(ky, ko) + a(ko, ki) etk

X(k17k2) = _b(k1,k2) + b(kz’k1)eiLk1 )

where
a(pr, pa, ) = P — 269 (Do, k) + r(py, W), )
b(p1, P2, k) =1 —2eP'r(p1, k) + r(p1, 5)r(p2, k)PP
e This is an algebraic equation in the p’'s

e Energies agree with explicit diagonalisation
e Extending to three or more magnons is challenging



3 magnons in the Z-vacuum

e Apply the above insights to the Z-vacuum

Here the dispersion relation is much simpler: E =k +x~' —2cosp
1,2 magnons solved in [Gadde,Pomoni,Rastelli '10], 3-magnon was not known
Can make progress in special kinematic limits, e.g:  py, po+p3s =

Introduce additional momenta ky = py, ko + ks =«

{p1, P2, ks} 3-magnon problem can be solved [D. Bozkurt, E. Pomoni, ongoing]

Interesting quasi-Hopf-like structure (®423 is a coassociator)
S12P312S13015,S23P 123 = Pan1 SazPogy S13P213S12

e Can be worthwhile to study non-associative scattering more generally



Quasi-Hopf YBE

L

1 3 2 1

-

D321 Rog Py R13P213R12 = Ri2P312R13® 5p RosPi2a



Non-abelian orbifolds

e Simplest case: Binary dihedral group D,

Zi C. Xis Xs2 ./‘) Ze2

e D, orbifold of SU(8N)

W =201 Tr1(Z11X15 Ys1) — 2092Tro(Zoo Yo5 X52) + 293 Tr3(Za33 X35 Y53) — 294 Tra(Zas Yas Xsa)
+ 9515 (Zss(Xs2 Yos + Xsa Yas — Y51 Xi5 — Ys3X35))

¢ 13 fields, 4 ratios of coupling constants x; = g;/gs



The D, spin chain
e Dynamical spin chain of quite peculiar type

e No X or Y vacua, only Z vacua. No nontrivial SU(2) sectors.

e Fields meeting at node 5 are purely reflected:

H(Xi5 Ys1) = 45 X15 Ys1

Fields meeting at the outer nodes scatter nontrivially:

’
H(Ys1Xi5) = E(Y51X15 + Y53X35 — X52 Yo5 — X54 Ya5)

So far: coordinate Bethe ansatz for 2-magnon excitations around the Z
vacuum [with J. Bath, ongoing].



Outline

Quantum symmetries for orbifold theories

Interpretation as RSOS models



Quantum Symmetry
[work with E. Andriolo, H. Bertle, E. Pomoni and X. Zhang]

e Let us go back to the Z, case

Xi2

Yo
Geg e

Xo1

Naively, SU(4)g — SU(2),”"? x SU(2)5%* x U(1)

Eight broken generators: R%, , RY, , A%, R% + conjugates

Relate fields which now belong to different SU(N) x SU(N) representations

e Claim: Can upgrade them to true generators in a quantum version of SU(4)g

E.g. want to write: | R3X%, = Z2, |

R%Z%, = X%,




Quantum Symmetry

e Gauge indices of all fields to the right need to be flipped

A(0%9)
c L1 X2l Y1 Xi2 oo — - L1 L1141 Y2 Xo -

Can achieve this with a suitable coproduct = Quantum algebra

Structure is that of a quantum groupoid [Lu '96, Xu '99]

Path groupoid: Like a group, but not all compositions of elements are allowed.
The allowed paths are those given by the quiver.

Unbroken generators have the usual algebraic coproduct Ay(a) = I®a+a® |

However, for the broken generators we define:

No(a)=1®a + a®y , where v(X;) = X1

To complete the algebra we also need A(y) =y ® v



Twist
e Can move away from the orbifold point by a Drinfeld twist

A(a) = FA (a)F !

e We require that A preserves the F-term relations:

1
INCDI <X12222 - HZ11X12) =0

e A suitable twist is:

1 if the gauge index is 1

F=1I®x"2 where s= { —1 if the gauge index is 2

e Recall that ~ flips the gauge index = soy = —vos



Twisted coproduct

e Twisting the unbroken generators has no effect:
A(Us) = (I® /i_g)(l® 03 +03® I)(/® /{g) = (/® 03+ 03® I)

But on the broken generators we find:

A(Ui):(/®”_§)(/®0i+ai®7)(l®ﬁg)Z(I®0i—|—ai®7ms)

Defining K = vx®, and also A,(s) = s ® I, our final coproducts are:

|A(0x) =801 + 040K , AK)=KaK |

e K2 =1 = Compatibility of the coproduct with the algebra product
A(fo4,0-]) = [A(o4), Ao-)]

The SU(2) commutation relations are not deformed, unlike in Ugy(s1(2))



Iterated coproduct
e The twist satisfies the cocycle condition
Fi2 0 (Do ®id)(F) = Faz 0 (id ® Ao)(F) =: Fg)
giving
A®)(a) = FgaD(a)F = lolva+ivacK+av KoK

e Similarly we find the L-site coproduct for the broken/revived generators:

A(L)(a):Z...[®[®ai®K®K...

i

e By construction, the coproduct preserves the quantum plane relations
e The superpotential is now invariant under all SU(3) generators
ARG > W= 2O F ) e W =20 (T4 bW =0



Is this useful?

e The Hamiltonian does not commute with A(a) (for the broken a’s).

e So we do not expect k-deformed multiplets
to map 1-1 to eigenstates of the Hamiltonian

e Let us make an analogy to the Algebraic Bethe Ansatz and assume there
exists an R-matrix R(u), depending on a spectral parameter u

e Our twist is in the quantum plane limit (u — oo for rational integrable models)
e The full twist will also be u-dependent, such that

R(u,r) = F(u)21R(u, s =1)F(u);5
e So we expect a different twist/coproduct for each u (i.e. each eigenvalue of H)

o For BPS states, it turns out that ABPS(a, k) = A(a,1/k).

e Agrees with the direct diagonalisation in [Gadde,Pomoni,Rastelli *10]



Example: BPS spectrum
X12X21 X12X21

lABPS(UXZ)
X2 Xo1 X12Z22 + £ X12Xo1Z11 X12 + X12Z02X21 X2 + K211 X12X21 X12
J( ABPS(U{Z)
1 X12X01Z11 211 + X12Zoo Xo1 Zi1 + - X12Z02Zoo Xot + 211 X12Xo1 Zi1 + Z11 X12Z02 X1 + 1211 Z11 X12Xo1

1
e To get a closed eigenstate, add the state with {1 «» 2,k <+ x~'} and impose
cyclicity. We find the following BPS state:
]
KT (X12X21Z11211) + Tri(X12Z22X21Z11) + ~Try (X12Z22222X21)

e This state is not protected by ' = 2 supersymmetry. The fact that it still has
E = 0 is a consequence of the quantum symmetry



Twisted SU(4) groupoid

e We have extended this to multiplets in the full deformed SU(4) sector
[Andriolo, Bertle, Pomoni, Zhang, KZ, to appear]

e Mainly focused on L =2 (20’,15) and L = 3 (50, 10) etc.

e The non-BPS multiplets of the closed Hamiltonian at x = 1 break up into
several multiplets as « # 1

e Main idea: Can partially untwist the Hamiltonian to make the open multiplets
agree with those at the orbifold point, while leaving the closed spectrum
unchanged. Schematically:

R'(u,r) = G(u)21 R(u, k)G(U)7y = Hbpen = Hopen + 0Hopen (but Hg = H)

¢ In this basis the splitting is only due to the closed boundary conditions
e First step towards constructing R(u)



Outline

e Interpretation as RSOS models



RSOS models

d ¢
W(ab”)'

Lattice models where the Boltzmann weights depend on labels around each
face (called heights)

Introduced in [Andrews, Baxter, Forrester '84]
Original model related to elliptic XYZ spin chain

a a+i B a al=Hi _ 61(2n—u)
W( a+1 a+2 ”)*W< a-1 a-2 “)*

[ ]
D
U
(ST

61(2n)
W( a a+i ‘u) :W< A= ) V01 (2n(a— 1) + w)01(n(a+ 1) + wo) 61(4)
a—1 a a+1 01(2na + wp) 61(2n)
W( a a+1 ‘u>:91(2715+W0+U) W( a af1 )) 01(2na+ wy — u)
a+1 01(2na + wy) a—1 01(2na + wp)

Neighbouring heights related by |a — b| = 1.



RSOS models
e The ABF weights satisfy the Star-Triangle relation
Sw(g §l-mw(g Cl)w(g 51w
=xw( g dw(a slw( s L)

or pictorially:

DA 7N
\

e Guarantees [T(u), T(tv')] = 0 = integrability of the model

b



Adjacency diagrams

e SOS: Range of heights is unrestricted
e RSOS: The heights take values in aninterval, a=1,...,N
e More generally can draw an adjacency/incidence diagram

e Any ADE Dynkin diagram can be the incidence diagram for a critical RSOS
model [Pasquier '86]

e Generalisations [Di Francesco, Zuber '90, Roche '90, Fendley,Ginparg "89]
e Cyclic SOS models [Pearce, Seaton '88, 89, Kuniba, Yajima '88]: amax + 1 = ay
e Examples: Aj (Ising model), A(21)

3

® °
1 2 3

1 2




Dilute RSOS models

e Can relax the |a— b| = 1 conditionto |a— b| < 1

Additional Boltzmann weights

Such models are called “dilute” [Nienhuis *90,Kostov '91, Warnaar, Nienhuis, Seaton
'92, Roche 92, Warnaar ‘93, Warnaar, Pearce, Seaton, Nienhuis '94, Behrend, Pearce '97]

Notation comes through the link to loop models

IR PRY A RART RIS

“Domain walls” separating different values of d



Face-vertex map

RSOS and vertex models can be mapped to each other
Graphically:

c J i
d@b - = Ru Ny
u
a k /

For SU(2) ABF case introduced by [Felder '94]

The R-matrix depends on dynamical parameter A = —2nd

Satisfies a dynamical Yang-Baxter equation
Roz(uz — us; A)Rya(uy — ug; A+ 2nh®)Rya(uy — uz; A)
= R12(U1 — U; A+ 277h(3))R13(U1 — Usg; )\)R23(U2 —Us; A+ 277h(1)) .



The dynamical YBE

e )\ is shifted every time a line is crossed

Lo
R (u;)) = )\>< j—2—
A+2nhi
ko1

e Dynamical Yang-Baxter equation:

\

A-2nhGH M+2n 35 A0

A2n 2 h() i=2,3
\ i=2,3
A = A2n 32, hD
M2n 3 A0 \3
1 AF2nh(h) i=1,2 3

2
e See also [Yagi '15,17] for other applications to quiver theories



Relation to the Z; quiver theory

Our claim: The SU(3) sector of the interpolating theory
is the vertex model corresponding to a dilute CSOS model

The dynamical parameter/left height tracks the gauge coupling

Crossing X, Y: A — A+ 2p

Crossing Z: X\ unchanged (dilute)

A ~ A+ 4n (cyclic)

In the RSOS model the cyclicity means that the weights are invariant under
d—-d+2



Dynamical 15-vertex model

d+1 Xat2nX d—1 Ya—2onY d+1 Xx+2nY
d@dJrZ: A X+an d<l>d—2: A X—4n, d d=x X x
d+1 XA+2ny d-1 yA—2ny d+1 xA+2ny,
d—1 Ya—2nX d—1 Ya—2onX d+1 Xat2nY d+1 Xa+2nZ
d=1 yA—2n) d+1 xA+2ny d-1 yA—2n) d+1 A2y
d—1 Yr—onZ d V4 A X d V4 A Y d V4 A X
da—1 yA—2nz d z X x d z Xy d+1 XA 2nz
d Z x) d+1 Xa+2nZ d—1 Ya—2nZ d Z 0B
d@d71: A><2n’ d@d+1: : )\+2n’ d@d71: %2’”7 d@d - )><)\
G=] yrA—2nz d z X x d z Xy d z Xz



XXX spin chain as a dilute CSOS model

Z
—

X7/ \\Y

Need 3 heights d = 1,2, 3, identify 0 ~ 3,4 ~ 1
Use standard SU(3) Heisenberg R-matrix

mm:JHme)

Non-dynamical: R(u) doesn’t depend on d.
Star-triangle relation is satisfied
We have a 3-1 map from the XXX spin chain to a face model



Extension to a 27-vertex model

e The construction naturally allows 12 more vertices

1 z z > X X
1@1 = >< 9 3@1 = >< + 10 more
2 X 14 S Y z

e These interactions are not allowed by N’ = 2,4 SUSY
e Presentin A/ =1 SCFT’s (e.g. Leigh-Strassler)

Wis = KTr <X[Y, Z)g+ g (X2 + (V) + (2)3))

e Quasi-Hopf symmetry [Dlamini-KZ *19]: Expect a quasi-Hopf version of
star-triangle relation



Quasi-Hopf star-triangle relation

(Last ¢ on left and first ¢ on right not shown)



orbifold as a dilute CSOS model
©),
@) O

O ® O

We define an RSOS/dynamical 15-vertex model as above
Now the allowed heightsare d =1,...,6

Dynamical: R(u, ) for d odd, R(u,1/x) for d even
Expect elliptic dependence on u

Can the star-triangle relation be satisfied with this input?



Generalisations

For Z, orbifolds, we just need 3k heights

Every k heights have equal Boltzmann weights

For N = 1 theories, we can extend to a 19-vertex model
d z z At X Y d z z d1 Y X
SO RO COTE) U0 T4

b b b
a+1 X 1% d z z a—1 Y X d z z

Vertices such as XZ — YY are not possible for k > 1

Conjecture: Spin chains for a large class of ' = 1 quiver theories are
described by dynamical 19-vertex models, while those for N' = 2 quiver
theories are described by dynamical 15-vertex models



Summary

e Spin chains for A/ = 2 orbifold theories are dynamical

e Magnon scattering can get complicated and intricate

e Showed the 2-magnon CBA for the X and Z vacuum

e The 3-magnon CBA for the Z vacuum is tractable

e The D, orbifold theory brings in even more unusual features

e The naively broken SU(4)g generators are not lost but can be upgraded to
generators of a quantum groupoid

e We have been studying short chains with the goal of better understanding the
implications of this quantum symmetry

e There is a link between supersymmetric gauge theories and dilute RSOS
models which we are starting to uncover



Outlook

Unrestricted three-magnon problem, also for X vacuum

Integrability? Solvability?

Fully understand the quantum group symmetries, extend to full PSU(2, 2|4)
Clarify links to elliptic quantum groups (Felder)

Find Boltzmann weights realising the required adjacency graphs

Generalise to Zx and more general ADE quivers (expect higher-genus theta
functions to appear)

Higher loops? Supergravity side?

Lessons from link to RSOS models? How general is the mapping of gauge
theories to statistical models?

Thanks for your attention!



