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| HC ana its experiments

CMS Experiment at the LHC, CERN
[ Data recorded: 2018-Oct-16 14:18:51.574976 GMT
¥ Run/ Event/LS: 324747 / 415131150/ 275

The Large Hadron Collider is the largest and
most powerful particle accelerator

o Collides beams of protons up to 13.8 TeV
» Enable investigation at the TeV scale
« Proton bunches collided every 25 ns

Broad physics programme
« Measurements of SM processes
e Higgs, Flavour, EWK physics, ...
o Search for new physics
« SUSY, Hidden Valleys, Dark Matter, ...
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The high intensity challenge

CMS Experiment at the LHC, CERN
. % Data recorded: 2016-Oct-14 09:33:30.044032 GMT
L= | Run/Event/LS:283171 /95092595 /195

Physics of interest usually quite rare
» Rates ~10-15 orders of magnitude lower

than most common background processes
High collision rate increases probability
to observe physics of interest
¢ 600 million collisions/s
 Tens overlapping collisions (pileup)
o Just few containing interesting particles R ——_—

e Interesting physics look very similar to background

Challenges:
e need to handle large amount of particles,
e disentangle collision products,
e identify interesting physics in a see of particles

100 everlapping collisions (orange):

A. de Cosa



The magnitude of the data problem

High collision rate increases probability
to observe physics of interest

¢ N6OO mIHIOﬂ COI“SlOnS/S i Total physics data in CASTOR + CTA
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Single Copy Size Last* 462 PB == Amount of data stored Last*: 498 PB == File Count Last*: 615 Mil
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From interaction to data

Large amounts of heterogeneous and complex data from
multiple sub-detectors

0©(10%) sensors used to record particles from p-p collisions

Om m 2m im am 5m 6m /m
Key:

Muon
Electron
Charged Hadron (e.g. Pion)
- — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

_ Electromagnetic
| )1! ]' Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed
Transverse slice with Muon chambers
through CMS

D Bamaey, CERN, Febriwry 2004
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From the collisions to the pnysics result

Challenges:
eLarge amounts of high-dimensional data {7 ~100 kHz

e Large collisions production rate
e Limited frontend output bandwidth

e Limited storage space Collision Data
40 MHz
~1 kHz
Offline analysis q=l
CMS \s=7TeV.L-51fb'\s=8TeV.L=53f" - ) ) Storage
& ] Reconstruction ————
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Online gata selection

Impossible to handle subdetector outputs at LHC rates
» Need to decide what to discard and what to keep for further analysis Colision Dot
» Online event selection performed by L1 (hardware) and HLT (software) triggers 40 MHz

But trigger selection is currently a huge limitation to experiments sensitivity reach

\ N 0 *'///F‘/' g

« ML embedding in on-detector FPGA systems

Detector
collisions

©

High-Level Dats
Trgger Analysis

=)= =

40,000,000 100,000 1,000
events/sec events/sec events/sec

L1 trigger
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Data Simulation

Simulated data is crucial for LHC experiments: ~— Ssiorage

o to design optimal analyses for SM measurements and new physics searches

o to develop new detector technologies G
Large data samples are needed to reduce systematical uncertainties Simulated Data -

Production of MC simulated data is computationally intensive
 Requires a lot of resources (CPU and data storage)

Number of CPUs Running

ML techniques (e.g. Generative Adversarial Networks)
offer a promising approach to this issue

RunningCpus

12 Mar 13 Mar 14 Mar 15 Mar 16 Mar 17 Mar 18 Mar

B RunIISummer20UL18wmLHEGEN [ RunIISummer2QUL17GEN [ RunIISummer20UL16GEN [J Run3ReReco
B RunIISummer20UL17wmLHEGEN [l All Running CPUs
Max Avegage Min Current
All Running Cpus 352599 283982 0
RunIISummer20UL18wmLHEGEN 167880 72827 0
RunIISummer20QUL17GEN 160187 49791 0
RunIISummer20UL16GEN 134348 51432 0
Run3ReReco 84158 32456 0
RunIISummer20UL17wmLHEGEN 80093 21232 0

OO0 0 000
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From data to pnysics it | S

4=

Raw data are processed to reconstruct tracks and energy clusters, which are combined
to identify and measure physics objects (leptons, hadrons) produced in the collisions

CMS Experiment at LHC, CERN

Data recorded: Wed Jul 8 19:26:24 2015 CEST
Run/Event: 251244 / 83494441

Lumi section: 151

\ [Orbit/Crossing: 39572626 / 358

CMS Experiment at the LHC, CERN
Data recorded: 2016-Jul-14 23:45:11.547328 GMT
Run / Event / LS: 276811 / 2968707874 / 1776
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Reconstruction

Low-level reconstruction algorithms (tracking and calorimeter clustering) | ,
= = E t C—
require huge resources in terms of CPU Recon:::uction | Storage

Example: Tracking algorithm (~108) channel:
e Track seeds from hits
o Seeds are extended to full tracks
o Tracking software must be fast for reconstruction at HLT (100 KHz)

Graph neural network techniques are being explored for tracking and calorimeter clustering
- Inter-experiments efforts on going towards HL-LHC (including tracking at L1 trigger)

Mean number of hits 110K
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et classification —

Quarks and gluons produced in p-p collisions
shower and hadronize appearing as jets of particles

110 120 130 140 150
m,, (GeV)

o Jets are complex objects to reconstruct and identity

o Jets features can give an important insight on their origin

Parton level

Jet 0,
pt =2.62 TeV .
eta = 0.357 T \ ______
phi = 0.346 Ay ,'7 e TS M, e

/ | ,' 5 | p -------------

B p\ Particle Jet Energy depositions

e oatmrguue® | : .
I In calorimeters

Jets classification:
e Quark vs gluon jets

e Heavy vs light flavour jets

Jet 1,
da = 0160 « Boosted objects (top, Higgs, W/Z)
82.15’ iﬁ%?ggfnstuar: 5301’2%51@;-51 2015 CDT 4 : -
mjrr'\‘/lEs\;ecrtlltOff);f762 /310157776 -l ® \I e\W p hyS ICS J ets

Dijet Mass : 5.4 TeV
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Jets supstructure

a/g-jet /\

CMS Simulation Preliminary CMS Simulation Preliminary

h/W/Z-jet

Q/9
U h/UJ/Z-qq £~tba=aaq
_ o _ 0510 15 20 25 30 8 %570 15 20 25 30 3B
Highly energetic jets from heavy objects (t, H, W, Z) overlag . pixel, | pixel,
. g/g-jet top-jet
 Decay products appear as collimated . (13 TeV)
> W1 T T T
 High level jet substructure variables widely used for jet s [ CMS JINST 15 (2020) POBOOS -
o , 5 - Simulation Preliminary
ClaSSsl ﬂ cation g e = Top quark vs QCD multijet E
. % - 1000 <p" <1500 GeV, "™l < 2.4
« Modern approach: make use of low-level features (particle € | tos<mi<2t0Gev
107" 110<m”® <210 GeV —
momenta) B - 140<mn<220GeV
o feeding minimally processed data into a DDN 102 o Toeinks =
- ~ ---DeepAK8-MD
i i ; i i ImageTop
Similar considerations apply to g-, g- and nonSM-jets o " mageTop D -
g =gnm - —-Mgp +Tgy + b 3
identification —BEST ©
10-4 L ”xj’.'f."ﬁ. T .T.N?-I?[).Tl(cl:Al15|). 1

0 01 02 03 04 05 068 07
Signal efficienc
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https://arxiv.org/abs/2004.08262

HL-LHC: the nign luminosity challenge

e Peak luminosity =Integrated luminosity

6.0e434 e T T T T T T T ] — 3500

High Lumi LHC: Particle rate expected to increase by a factor 10

e« Luminosity will go up to 5 X 10°%cm=1s™1 - %;
-Average pileup: <p>= 140 g 3:0E+34 g
+3000 fb~! of data (10 x LHC) t.. B B M Vi -
HL-LHC data will allow precision Higgs boson measurements . i

and enlarge the explorations of new physics possibilities

0.0E+00 +—o——

Year

Overlapping collisions
Increase in particle rate comes with

(13 TeV)

. increase in complexity of data-handling S ACMS e HL-LHC

e InCrease in storage and CPU requirements § -
Requiring: : HAC Aun 2

» new tools for data processing i

30 40 50 60 70 80 90 100
Mean number of interactions per crossing 140
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The LHC Session

Today

Tomorrow
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Additional material




Heavy Flavour jet tagging e

Jets originated from b-quark fragmentation appears
In final states of several interesting processes:

eco.:tt > WbWb, VH — Vbb

b-jets tagging exploits B mesons decay features

110 120 130 140 150
m,, (GeV)

JINST 13 (2018) P05011

« B mesons long lifetime leads to displaced decay > 1o ,,,,I,,,,,,,,,I,,,,,,,,,l,,,,,,,,??,T.‘?Y;?P
. . = F CM z ] é s o /A
» Presence of leptons from semileptonic decays % " Simulation gdsg ) -
i . i Re! L : ' j

Modern b-tagging methods use deep learning techniques © th+jets
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https://arxiv.org/abs/1712.07158

Offline analysis

Anomaly detection

Lack of a priori knowledge on what new physics might look like

o Vast landscape of new physics models being probed

at the LHC experiments up to the TeV scale
o Still lots of possibilities remain unexploread

Model agnostic strategies may open the doors to nhew physics
» Anomaly detection techniques based on DNN

(e.g Autoencoders) are gaining traction

SM jets

Neural network

Output

Input

_/
N

Encoder Decoder
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