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Credit:	https://fakeyou.com
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What is NOT machine learning (ML)?
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•ML	is	not	Hal-9000. • ML	is	not	Terminator.

• ML	is	not	an	alternative	to	human	beings.

(sorry,	chatGPT).



What is machine learning then?
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• ML	is	a	subfield	of	artificial	intelligence	(AI).
• AI:	branch	of	computer	science	that	aims	to	build	algorithms	capable	of	performing	

tasks typically	(traditionally)	accomplished	using	human	intelligence.

• ML	is	learning	from	data.
• There	is	no	learning	without	

data.
• ML	algorithms	only	learn	from	

the	data.

• ML	is	statistics	in	
disguise.



What is machine learning then?

Saúl Alonso-Monsalve 8

• Arthur	Samuel	defined	the	term	machine	learning	in	1959	as	“the	field	of	
study	that	gives	computers	the	ability	to	learn	without	being	explicitly	
programmed’’.

• Tom	Mitchell	updated	Arthur's	definition	in	1998:	“A	computer	program	is	
said	to	learn	from	experience	E with	respect	to	some	task	T and	some	
performance	measure	P,	if	its	performance	on	T,	as	measured	by	P,	
improves	with	experience	E’’.
§ Example:

o Classifying	emails	as	spam	or	not	spam	(T).
o Watching	a	person	labelling	emails	as	spam	or	not	spam	(E).
o The	fraction	of	emails	correctly	classified	as	spam	or	not	spam	(P).



Machine learning applications
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• More	than	99%	of	the	current	machine	learning	applications	have	the	form	
A	à B	(supervised	learning).

• They	learn	the	task	that	has	been	entrusted	to	them;	they	are	not	able	to	
think	for	themselves.

DOG!

DOG!
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AI, machine learning, and deep learning
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• Artificial	intelligence	(AI): branch	of	computer	
science	that	aims	to	build	algorithms	capable	of	
performing	tasks	traditionally	accomplished	
using	human	intelligence.

• Machine	learning	(ML):	AI	algorithms	that	learn	
from	input	data	to	perform	“intelligent”	tasks.

• Deep	learning	(DL):	subset	of	ML;	consists	of	
deep	neural	networks	trained	on	large	datasets.

• Physics-based	deep	learning	(PBDL):	
combinations	of	physical	modelling	and	
numerical	simulations	with	methods	based	on	
artificial	neural	networks.

*Source: Stack Exchange

https://ai.stackexchange.com/questions/15859/is-machine-learning-required-for-deep-learning


Types of machine learning
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1. Supervised	learning:	we	are	given	a	dataset	and	already know	what	the	
correct	output	should	look	like.
• Regression	problems:	we	are	trying	to	predict	results	within	a	continuous	

output.
• Example:	predicting	house	prices	based	on	house	size.

• Classification	problems:	we	are	trying	to	predict	results	in	a	discrete	output.
• Tagging	photos	as	‘cats’	or	‘dogs’.

2. Unsupervised	learning:	we	try	to	approach	problems	with	little	or	no	idea	
what	the	results	should	look	like.
• Example:	identifying	meaningful	patters	in	2D	data.

3. Reinforcement	learning:	an	agent	learns	to	make	decisions	in	an	
environment	by	receiving	rewards	or	penalties	for	its	actions.
• Example:	in	robotics,	grasping	objects	or	navigating	through	a	space.



Unsupervised learning
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• Example:	K-means	clustering.

Source: Codeacademy

https://www.codecademy.com/learn/mle-machine-learning-fundamentals/modules/mlecp-unsupervised-learning-algorithms-i/cheatsheet


Reinforcement learning
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• Example:	self-driving	car.

Source:	Youtube

https://www.youtube.com/watch?v=ryUEZAMI1DE


Supervised learning: regression
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• The	goal	of	regression	is	to	find	a	function	that	best	
describes	the	relationship	between	the	input	(features)	and	
the	continuous	output	(target).	
• The	function	is	typically	represented	by	a	straight	line	or	a	

curve,	and	it	is	chosen	to	minimize	the	difference	between	the	
predicted	values	and	the	actual	values.

• The	most	commonly	used	regression	techniques	are	linear	
regression and	polynomial	regression.
§ Linear	regression	tries	to	fit	a	straight	line	to	the	data,	while	

polynomial	regression	fits	a	curve	of	a	higher	degree	to	the	data.

• To	evaluate	the	performance	of	a	regression	model,	we	
typically	use	metrics	such	as	mean	squared	error	(MSE).	
§ MSE	measures	the	average	squared	difference	between	the	

predicted	and	actual	values.

• Examples	of	regression	applications	include	predicting	
stock	prices,	weather	forecasting,	and	medical	diagnosis.

𝑌 = 𝑋!𝛽 + 𝜀

𝛽 = 𝑋!𝑋 "#𝑋! 𝑌

Learn 𝛽à𝛽! = −0.12, 𝛽" = 15.45
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Supervised learning: classification
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• The	goal	of	classification	is	to	find	a	function	that	maps	the	
input	features	to	a	discrete	output	variable (class	label).	The	
function	is	typically	represented	by	a	decision	boundary	
that	separates	the	different	classes	in	the	feature	space.

• The	most	commonly	used	classification	techniques	are	
logistic	regression,	decision	trees,	support	vector	machines
(SVM),	K-nearest	neighbours	(KNN),	and	neural	networks.

• To	evaluate	the	performance	of	a	classification	model,	we	
typically	use	metrics	such	as	accuracy,	precision,	recall,	and	
F1-score.	
§ Accuracy	measures	the	percentage	of	correctly	classified	

instances.
§ Precision	and	recall	measure	the	trade-off	between	false	

positives	and	false	negatives.	
§ F1-score	is	the	harmonic	mean	of	precision	and	recall.

• Examples	of	classification	applications	include	image	
recognition,	spam	detection,	sentiment	analysis,	and	
medical	diagnosis.

Blue:	class	A,	
Red:	class	B

Classification	
example:



Neural networks

Saúl Alonso-Monsalve 17

• Inspired	by	the	nervous	system	(and	not	exactly	by	how	the	brain	works).

• The	simplest	neural	network	model	is	the	perceptron (F.	Rosenblatt,	1958).
§ Perceptron:	mathematical	model	inspired	by	biological	neurons.
§ Typically	used	for	binary	classification	tasks.
§ The	perceptron	algorithm	is	a	building	block	for	more	complex	neural	
networks and	deep	learning	models.

Source: J. Roell. 2017

https://towardsdatascience.com/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks-d0411777571b


Neural networks
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• Neural	networks	are	trained	using	the	forward-backward-propagation	procedure.	
1. For	each	input	example,	the	network	calculates	a	prediction	through	forward	propagation.	
2. The	error	is	then	calculated	using	the	prediction	and	the	actual	label	of	the	event.	Finally,	the	

network	parameters	(weights)	are	readjusted	to	minimize	the	error through	backward	
propagation.	

3. This	process	is	repeated	iteratively	until	convergence,	improving	the	model's	ability	to	make	
accurate	predictions.

• Neural	networks	refer	to	models	consisting	of	multiple	layers	and	
multiple	neurons	per	layer.	
• The	layers	located	between	the	input	and	output	layers	are	known	as	

hidden	layers.	
• Increasing	the	number	of	neurons	and	layers	increases	the	model's	

capacity to	solve	more	complex	problems.

• Neural	networks	efficiently	parameterise	a	multi-dimensional	
space.	To	provide	a	representative	sample	of	the	parameter	space,	
it is crucial	to	have	a	sufficient	number	of	training	examples	(large	
datasets!).



Neural networks: training
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• Neural	network	training	works	by	iteratively	adjusting	the	weights	of	the	network	to	
minimize	the	difference	between	the	predicted	output	and	the	true	output.	This	is	done	
through	forward	and	backward	propagation.

Dataset random	batch	
of	labelled	examples

• Forward	propagation	involves	feeding	
input	data	through	the	network	to	
compute	an	output.

• Backward	propagation	involves	
computing	the	gradient	of	the	error	with	
respect	to	the	weights	of	the	network.
• The	weights	are	updated	in	the	

opposite	direction	of	the	gradient	
using	an	optimisation	algorithm	
such	as	stochastic	gradient	descent.

• The	process	of	forward	and	backward	
propagation	is	repeated for	multiple	
epochs	until	the	error	is	minimised	and	
the	network	is	trained	to	accurately	
predict	outputs	for	new	inputs.

calculate loss (error)	
compute	gradients

neural	network
with parameters
(weights)	𝜃
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Deep learning
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• Deep	learning	(DL)	refers	to	neural	networks	with	multiple	layers	(deep	neural	
networks)	aimed	to	solve	complex	problems.
• Real-world	applications	of	deep	neural	nets	often	have	tens	or	even	hundreds	of	

layers,	enabling	them	to	capture	complex	patterns	in	data	that	traditional	methods	
struggle	to	handle.

• Classical	machine	learning	techniques,	particularly	in	the	field	of	computer	vision	and	
natural	language	processing,	have	become	less	relevant	due	to	the	impressive	
performance	of	deep	neural	nets	[O'Mahony	et	al.].

Pe
rfo

rm
an

ce

Amout of data
AAA

   Large NN
   Medium NN
   Small NN
   Traditional ML. alg.

• Although	have	been	around	for	decades,	it	wasn't	until	recently	that	they	became	
feasible	to	run	on	large	datasets	using	available	hardware.
• The	DL	revolution	began	in	2012,	when	Krizhevsky et	al.	achieved	a	breakthrough	in	

image	classification by	significantly	reducing	the	classification	error	of	a	dataset	with	
10,000	categories	and	10	million	images,	using	a	deep	neural	network	
[DOI:10.1145/3065386].

https://arxiv.org/pdf/1910.13796.pdf
http://dx.doi.org/10.1145/3065386


Deep learning
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• Most	of	the	latest	advances	in	AI	are	due	to	deep	learning.
• Powering	daily	services.

• Translators,	social	media	recommendations,	maps,	spam	filters,	fraud	prevention,	virtual	assistants,	etc.
• And	behind	emerging	technologies:

• E.g.,	Autonomous	cars,	chat	bots,	image	generation.
• Some	experts	refer	to	deep	learning	as	the	new	industrial	revolution:	

(https://www.youtube.com/watch?v=yWa9i1ZaSes).

• Neural	networks	can	be	represented	by	
combinations	of	matrix	operations.
• Input	data	stored	as	vectors	or	matrices.
• Each	layer	extracts	characteristics	of	the	data	and	

passes	it	to	the	next	layer.
• Enables	sophisticated	data	transformations	and	

feature	extraction.
• The	power	of	GPUs (Graphics	Processing	Units)	has	

revolutionized	deep	learning	by	enabling	the	
processing	of	large	datasets	and	complex	neural	
networks with	lightning-fast	speed,	making	it	
possible	to	train	and	deploy	deep	learning	models	
for	a	variety	of	real-world	applications.

Source:	AI	index

https://www.youtube.com/watch?v=yWa9i1ZaSes
https://aiindex.stanford.edu/


Implementation
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• Fortunately,	deep-learning	frameworks	such	as	PyTorch and	TensorFlow	offer	a	
user-friendly	API	to	facilitate	the	experimentation	with	neural	networks.
§ Most	of	the	math	(matrix	operations,	gradient	calculations,	etc)	are	included	in	a	

transparent	way	to	the	user.

• Example	using	TensorFlow:

Trivial	implementaiton!
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Fully-connected neural networks (FCNN)
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• Fully-connected	neural	networks	(FCNNs),	also	known	as	
dense	neural	networks	or	multi-layer	perceptrons
(MLPs),	are	a	type	of	artificial	neural	network	where	each	
neuron	in	one	layer	is	connected	to	every	neuron	in	the	
next	layer.	

• FCNNs	are	commonly	used	for	tasks	such	as	classification	
and	regression,	and	can	be	used	in	combination	with	
other	neural	network	architectures	for	more	complex	
applications	such	as	computer	vision	and	natural	
language	processing.

• Example	an	application of	FCNNs	in	particle	physics:	“classification	of	particles	as	signal	or	
background	based	on	their	characteristics	measured	in	a	particle	detector”:
• Inputs:

• Energy,	momentum,	direction.
• Output:

• 1	(signal),	or 0	(background).
• Network	architecture:

• 2	hidden	layers	of	size	4	(+input	and	output).

DOI:10.1109/ACCESS.2019.2923321

input layer
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Convolutional neural networks (CNNs) 
in computer vision
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• Computer	vision	is	the	field	of	computer	science	that	tries	to	interpret	and	understand	
images	or	videos.

• Convolutional	neural	networks,	or	CNNs,	are	a	type	of	neural	network	architecture	
specifically	designed	for	image	recognition	tasks	in	computer	vision.
• CNNs	use	a	series	of	convolutional	layers	to	extract	features	from	images,	followed	by	

pooling	layers	to	reduce	dimensionality	and	fully-connected	layers	for	classification.	
• CNNs	have	achieved	state-of-the-art	performance	in a	variety	of	computer	vision	

tasks,	including	object	detection,	image	segmentation,	and	facial	recognition.

Source:	Openframeworks

input learnt	
kernel output

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html


Convolutional neural networks (CNNs) 
in computer vision

• Computer	vision	is	the	field	of	computer	science	that	tries	to	interpret	and	understand	
images	or	videos.

• Convolutional	neural	networks,	or	CNNs,	are	a	type	of	neural	network	architecture	
specifically	designed	for	image	recognition	tasks	in	computer	vision.

Source:	Adatis

Saúl Alonso-Monsalve

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html


Graph neural networks (GNNs)
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• Graph	Neural	Networks (GNNs)	are	a	type	of	deep	learning	model	that,	Unlike	traditional	
neural	networks	like	Multilayer	Perceptrons	(MLPs)	or	Convolutional	Neural	Networks	
(CNNs),	can	learn	and	process	information	from	the	complex	structure	of	graphs,	which	
makes	them	suitable	for	tasks	such	as	node	classification,	link	prediction,	and	graph	
classification.

• Compared	to	MLPs	and	CNNs,	GNNs	can	handle	graph	data	with	variable	size	and	structure,	
which	makes	them	more	suitable	for	applications	involving	relational	data.	GNNs	can	also	
capture	the	local	and	global	structure	of	graphs	and	can	learn	to	aggregate	information	from	
neighbouring	nodes	and	edges.

• Some	applications	of	GNNs	include	social	network	analysis,	recommendation	systems,	or	
bioinformatics.	GNNs	can	also	be	used	to	model	and	reason	about	physical	and	biological	
systems,	such	as	predicting	the	behaviour	of	proteins	or	designing	new	molecules.

Source:	GitHub

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html
https://rish-16.github.io/posts/gnn-math/


CNNs and GNNs: 
applications in physics
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• In	physics,	CNNs	and	GNNs	have	been	used	for	a	variety	of	applications,	including:
• Anomaly	detection.
• Signal	vs	background	discrimination.
• Galaxy	identification	and	classification.
• Neutrino	interaction	classification.
• Pileup	mitigation.	
• Event	energy	reconstruction.
• Track	vs	shower	separation.
• Particle	tracking.
• Etc.

• Some	of	the	above	applications	will	be	shown	at	this	workshop!

K.	Terao,	2020

S.	Inoue	et	al.,	
2022

https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf
https://watermark.silverchair.com/stac2055.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtMwggLPBgkqhkiG9w0BBwagggLAMIICvAIBADCCArUGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMEoc_3DCxsR5LFZurAgEQgIIChk1D80jjayeqJV_4_efPPgRRuJpmqk8ug579dP47UC48WcOrHjFnF0w5u6YX5viTWStkQ3d1JkwppvpF0rLPBIEeyajRd2YGI56ElzIJT80Y0tX4Iv8ord3uGDHn19PhdcCTnWgoUG1WXy6FaSI-uP64yc5xD0PCDPDY7wBJz7N7P1Cqn8N_8ixDZtLanEbCJkyEif2UNhL3t85Jmj4qDPcjJue4BvGO0cDPthBEN_GNFwOPqX4OrwUkfaSrzbX26bn-uLrSYo0mJY5NOkb8dcQNrsvEgs9S9NFcjxbB4KDc4ZtYTxxMadE4sRfBCxEYTNL-DIku_pjjljDGvjySTiPwF4o_fdzFEiP8SpjgqB26AMpfzKIPseSVXUIzYN2KaS_uLkWMdrSnYwer298WHVKiDtCrvPyZQW6oweBY5OgFHHonb0XYnshXj7Z0-aQNahzuhvSc8pVwm-8SWoI6Wpp04V-ZSMnzzmnxc_J3FuxXd7bZZOUsoG3H7L4_zVFwM-HJoZTKnIUeU6TxX3TR8oCbHASJWE7dTQtaeWIQGZWOspInQmPKrxRc6T-iNGI5HIi-zAcB0PPpXexQ0DlNdp76h2r03iIHBG_-SymnkHyHEKDYW7ji5qzm8WOiN9MSHPJ4jWs2egcv0qGgfx5Zhz-nWR-iIDmL2YbwWvNSYxtZKTe3bhPK3tz41yT24Yi5ilvMC8tah6hOFOjNtiSF0KZ9rC2TFmdOqqqeknUQMssJs9dZezYgIhnaGGBz3-DDcV5eyDaLzROGi-oBd9V6pny0xytwWQ9ehd9ycyRvUXYB_EpIkof6LnYUzYAh0HEX7Pdy8qSoDDw83PhyP4iBG-Ic_x4uhd4
https://watermark.silverchair.com/stac2055.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAtMwggLPBgkqhkiG9w0BBwagggLAMIICvAIBADCCArUGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMEoc_3DCxsR5LFZurAgEQgIIChk1D80jjayeqJV_4_efPPgRRuJpmqk8ug579dP47UC48WcOrHjFnF0w5u6YX5viTWStkQ3d1JkwppvpF0rLPBIEeyajRd2YGI56ElzIJT80Y0tX4Iv8ord3uGDHn19PhdcCTnWgoUG1WXy6FaSI-uP64yc5xD0PCDPDY7wBJz7N7P1Cqn8N_8ixDZtLanEbCJkyEif2UNhL3t85Jmj4qDPcjJue4BvGO0cDPthBEN_GNFwOPqX4OrwUkfaSrzbX26bn-uLrSYo0mJY5NOkb8dcQNrsvEgs9S9NFcjxbB4KDc4ZtYTxxMadE4sRfBCxEYTNL-DIku_pjjljDGvjySTiPwF4o_fdzFEiP8SpjgqB26AMpfzKIPseSVXUIzYN2KaS_uLkWMdrSnYwer298WHVKiDtCrvPyZQW6oweBY5OgFHHonb0XYnshXj7Z0-aQNahzuhvSc8pVwm-8SWoI6Wpp04V-ZSMnzzmnxc_J3FuxXd7bZZOUsoG3H7L4_zVFwM-HJoZTKnIUeU6TxX3TR8oCbHASJWE7dTQtaeWIQGZWOspInQmPKrxRc6T-iNGI5HIi-zAcB0PPpXexQ0DlNdp76h2r03iIHBG_-SymnkHyHEKDYW7ji5qzm8WOiN9MSHPJ4jWs2egcv0qGgfx5Zhz-nWR-iIDmL2YbwWvNSYxtZKTe3bhPK3tz41yT24Yi5ilvMC8tah6hOFOjNtiSF0KZ9rC2TFmdOqqqeknUQMssJs9dZezYgIhnaGGBz3-DDcV5eyDaLzROGi-oBd9V6pny0xytwWQ9ehd9ycyRvUXYB_EpIkof6LnYUzYAh0HEX7Pdy8qSoDDw83PhyP4iBG-Ic_x4uhd4


Recurrent neural networks (RNNs) 
in natural language processing
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• Recurrent	neural	networks,	or	RNNs,	are	a	type	of	neural	network	architecture	that	are	
designed	to	process	sequential	data.

• Unlike	FCNNs	or	CNNs,	RNNs	have	a	"memory"	that	allows	them	to	maintain	information	
about	previous	inputs and	use	it	to	influence	the	processing	of	current	inputs.

• There	are	several	types	of	RNNs,	including	Long	Short-Term	Memory	(LSTM) networks,	
and	Gated	Recurrent	Units	(GRUs),	which	vary	in	their	memory	mechanisms.

• RNNs	have	achieved	great	performance	in	a	variety	of	natural	language	processing	tasks,	
including	language	translation,	speech	recognition,	and	sentiment	analysis.

Source:	Reflect
GRU	
unit

LSTM	
unit

https://reflect.ucl.ac.uk/ad-veturi/2021/02/01/deep-learning-demystified/


Transformers
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• Transformers	are	a	type	of	deep	neural	network	
architecture	that	have	revolutionised natural	
language	processing	(NLP) and	other	sequence	
modeling	tasks.

• They	were	first	introduced	in	the	2017	paper	
"Attention	is	All	You	Need"	by	Vaswani	et	
al.(arXiv:1706.03762)	and	have	since	become	
one	of	the	most	popular	deep	learning	models.

• Transformers	have	been	successfully	applied	to	
a	wide	range	of	NLP	tasks,	including	machine	
translation,	text	summarization,	sentiment	
analysis,	and	named	entity	recognition.
– ChatGPT is	in		a	Transformer.

https://arxiv.org/abs/1706.03762


Transformers: input embedding
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• The	first	step	in	the	Transformer	model	is	to	convert	the	input	
sequence	of	tokens	(words,	characters,	etc.)	into	a	sequence	of	
dense	vectors	called	embeddings.
– These	embeddings	capture	the	meaning	of	the	tokens	and	their	relationships	

to	each	other.
– The	input	embeddings	are	fed	into	the	self-attention	mechanism,	which	is	the	

core	of	the	Transformer	model.

“I	am	a	student”

Input						
Embedding

Token Embedding

… …
a [0.40,	0.15,	0.99]
… …
am [0.11,	0.28,	0.11]
… …
I [0.59,	0.23,	0.02]
… …

student [0.12,	0.35,	0.61]
… …

0.59 0.23 0.02
0.11 0.28 0.11
0.40 0.15 0.99
0.12 0.35 0.61

I	

am

a

student 4x3

Transformers use positional encoding, adding a set of
sinusoidal functions to the input embeddings to
provide information about the relative positions of
tokens, as they lack a built-in notion of sequence order.



Transformers: self-attention
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I	am	a	student

0.59 0.23 0.02

0.11 0.28 0.11

0.40 0.15 0.99

0.12 0.35 0.61

I	

am

a

student XNxM

linear linear linear

XNxM

VNxMK
NxM

QNxM

softmax(QK
T

$ )A							=NxN

AVO							=NxM

• Self-attention is	a	mechanism	that	allows	each	token	in	the	input	
sequence	to	attend	to	all	other	tokens	and	learn	context-specific	
representations.

Input						
Embedding

0.4 0.1 0.2 0.3

0.3 0.6 0.0 0.1

0.2 0.1 0.5 0.2

0.4 0.1 0.1 0.4

I	

am

a

student

I																	am																a													student

ANxN

• The	self-attention	mechanism	computes	a	
weighted	sum	of	the	input	embeddings,	
where	the	weights	are	learned	based	on	the	
similarity	between	the	tokens.

• Unlike	memory	mechanisms	in	RNNs,	self-
attention	enables	the	Transformer	model	to	
capture	long-range	dependencies	and	handle	
variable-length	input	sequences.

While self-attention is a key component of the
Transformer architecture, it is important to note that
Transformers use multi-head attention, which
allows the model to attend to information from
different representation subspaces.



Transformers: decoder
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• As	seen,	the	encoder component	processes	the	input	
sequence	and	produces	a	set	of	encoded	
representations	that	capture	the	contextual	
information	of	each	token	in	the	sequence.

• Transformers	can	be	used	in	both	encoder	and	
decoder	configurations	for	sequence-to-sequence	
tasks (e.g.,	text	generation).

• The	decoder is	a	variant	of	the	Transformer-encoder	
model	that	is	used	to	generate	the	output	sequence	
from	the	encoded	input	sequence.

• The	decoder	uses	masked	self-attention	to	attend	
only	to	the	previously	generated	tokens	in	the	output	
sequence,	ensuring	that	the	model	does	not	cheat	by	
looking	ahead	in	the	sequence.
– K	and	V	are	the	encoder	representations	in	the	second	

multi-head	attention	block.



RNNs and Transformers: 
applications in physics
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• In	physics,	RNNs	and	Transformers	have	been	used	for	a	variety	of	applications,	
including:
• Particle	decay	prediction.
• Particle	track	fitting.
• Vertex	finding.
• Jet	identification.
• Analysis	of	unordered	set	of	particles.
• Etc.

• Although	Transformers were	initially	developed	for	natural	language	processing	
(NLP)	tasks,	they	have	found	applications	in	a	wide	range	of	domains	beyond	
NLP as	well.
• Transformers	have	been	applied	to	computer	vision	tasks	such	as	image	
classification,	object	detection,	and	segmentation.	Vision	Transformers	
(ViT)	is	one	such	example	that	can	achieve	state-of-the-art	results	on	
several	benchmark	datasets.



Choosing the right architecture
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• When	choosing	a	neural	network	architecture,	consider	the	following	factors:
§ Data	type	and	task	complexity:	different	architectures	are	designed	to	handle	different	

types	of	data	and	tasks.	For	example,	CNNs	are	best	for	image	and	video recognition,	
while	RNNs	and	Transformers	are	best	for	natural	language	processing.

§ Amount	of	training	data:	some	architectures	require	large	amounts	of	data	to	train	
effectively,	while	others	can	achieve	good	results	with	smaller	amounts	of	data.

§ Network	capacity	and	computing	resources:	having	more	model	parameters	can	
potentially	improve	a	model's	performance,	as	it	allows	the	model	to	learn	more	
complex	representations	of	the	data.		However:
§ Larger	models	require	more	computational	resources	to	train	and	inference,	which	can	be	a	

practical	limitation	in	some	applications.
§ As	the	number	of	parameters	increases,	so	does	the	risk	of	overfitting	the	training	data,	which	

can	lead	to	poor	performance	on	new,	unseen	data.
§ Optimisation	algorithms	can also	struggle	with	larger	models	due	to	increased	computation	

time	and	the	possibility	of	getting	stuck	in	local	minima.

• Overall,	the	best	architecture	for	a	neural	network	depends	on	a	variety	of	
factors	and	requires	experimentation	and	iteration	to	find	the	optimal	solution.



Extra: Generative models
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• Generative	models	can	create	new	data	samples	that	resemble	the	input	data	distribution.

• Two	main	types	of	generative	models	are	Generative	Adversarial	Networks	(GANs) and	
Variational	Autoencoders	(VAEs).
§ GANs	consist	of	a	generator	network	and	a	discriminator	network	that	are	trained	

together	to	generate	realistic	samples.
§ VAEs	encode	input	data	into	a	latent	space	and	generate	new	samples	by	sampling	

from	this	latent	space	and	decoding the	samples	back	into	the	original	input	space.

Source

Source

GAN	
structure

https://condor.depaul.edu/ntomuro/courses/578/notes/Catch%20Me%20if%20you%20GAN%20Rev04.pdf
https://neurohive.io/en/state-of-the-art/faster-learning-and-better-image-quality-with-evolving-generative-adversarial-networks/


Generative models
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• Particle	Flows	and	Stable	Diffusion	are	two	newer	types	of	
generative	models	that	have	shown	promising	results.
§ Particle	Flows	transform	an	initial	distribution	of	particles	to	a	

target	distribution	through	a	series	of	continuous	
transformations.

§ Stable	Diffusion	uses a	multi-step	diffusion	process	with	
controlled	noise	levels,	allowing	the	algorithm	to	produce	
high-quality	and	diverse	images.

• Generative	models	have	applications	in	various	areas	such	as	data	
augmentation, super	resolution,	or style	transfer.

• In	particle	physics,	generative	models	can	be	used	to	simulate	
particle	interactions	and	generate	new	data	samples	for	analysis.
• Generative	models	are	in	general	much	faster	than	Montecarlo

simulations.

• In	astrophysics,	generative	models	can	be	used	to	generate	
simulations	of	the	universe	and	the	distribution	of	dark	matter.

Example	of	Stable	
Diffusion:	source

https://www.photoroom.com/tech/stable-diffusion-25-percent-faster-and-save-seconds
https://www.photoroom.com/tech/stable-diffusion-25-percent-faster-and-save-seconds
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Credit:	https://stablediffusionweb.com

Examples of Stable Diffusion

https://stablediffusionweb.com/
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Examples of Stable Diffusion

Credit:	https://stablediffusionweb.com

https://stablediffusionweb.com/
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Sparse data
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• In	particle	physics	and	astrophysics,	data	is	often	sparse,	due	to	the	nature	of	the	
objects	being	studied	or	the	particles	detected.	

• This	poses	a	challenge	for	machine	learning,	as	traditional	machine	learning	
algorithms	are	designed	to	work	with	dense	data.	To	address	this,	researchers	
are	developing	new	algorithms	and	techniques	specifically	tailored	to	sparse	
data.	
• For	example,	one	approach	is	to	use	Submanifold	Sparse	Convolutional	Networks	

(SSCN),	where	the	convolution	operation	is	performed	only	on	the	non-zero	elements	
of	the	sparse	data,	resulting	in	an	efficient	and	accurate	representation	of	the	data.

• Another	approach	is	to	use	graph-based	methods,	which	can	effectively	capture	the	
relationships	between	entities	in	sparse	data.

Source: https://www.britannica.com/

“Dense” image

• All pixels 
might be 
helpful for the 
classification.

• Ideal for 
standard 
CNNs.

“Sparse” images

• Most pixels are 
background.

• A standard CNN 
would perform 
loads of useless 
computations.



Automated physics analyses
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• Machine	learning	can	be	used	to	automate	certain	aspects	of	physics	analyses,	such	as	the	data	
preprocessing,	event	selection,	reconstruction,	etc	(or	event	for	calibration/modelling	in	particle	physics	
detectors).

• This	can	save	significant	time	and	resources,	and	can	also	help	ensure	that	analyses	are	reproducible	and	
consistent.	
• For	example,	machine	learning	can	be	used	to	automatically	detect	and	remove	background	events	in	

particle	physics	experiments,	or	to	identify	and	classify	different	types	of	galaxies	in	astrophysics.
• It	can	also	help	reduce	human	bias	in	the	analysis	process.

• There	are	many	remarkable	advances	in	this	regard.
• Despite	promising	advances	in	this	area,	integrating	machine	learning	techniques	into	the	analysis	

flow	of	physics	experiments	can	be	challenging	due	to	technical,	logistical,	and	sometimes	skeptical
barriers.

“Scalable,	End-to-End,	
Deep-Learning-Based	Data	
Reconstruction	Chain	for	
Particle	Imaging	Detectors
”	- F.	Drielsma et	al.	2021

https://arxiv.org/abs/2102.01033


Addressing the interpretability and 
explainability of machine learning models
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• Addressing	the	interpretability	and	explainability	of	machine	learning	models	in	particle	
physics	and	astrophysics	is	a	significant	challenge.	
• It	is	not	enough	to	have	a	model	that	can	accurately	predict	outcomes;	scientists	need	

to	know	how	and	why	the	model	is	making	these	decisions.	
• Developing	methods	for	understanding	and	interpreting	machine	learning	models	is	

an	area	of	active	research.

• Auto-explained	models	are	models	that	can	explain	their	decisions	in	a	way	that	is	
understandable	to	humans.	
• This	is	important	for	applications	where	it	is	critical	to	know	why	the	model	is	

making	a	certain	decision,	such	as	in	medical	diagnosis.
• In	particle	physics	and	astrophysics,	auto-explained	models	can	help	scientists	

understand,	for	instance,	why	a	certain	object	was	classified	in	a	certain	way.	

Auto-explained 
model

Input    
image

"This	is	an	electron	because	it	has	a	
sudden	high	energy	deposit,	and	
because	it	produces	a	characteristic	
electromagnetic	shower	near	the	end	
of	the	track."



Robustness against systematic uncertainties 
and simulation mismodellings
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• In	particle	physics	and	astrophysics,	there	are	often	systematic	uncertainties	
related	to	the	measurements,	as	well	as	mismodellings in	the	simulations.	
§ These	uncertainties	can	arise	from	a	variety	of	sources	and	can	affect	the	accuracy	

and	precision	of	the	measurements	and	simulations	in	these	fields.

• Machine	learning	models	can	be	biased	or	inaccurate	as	a	result.	
§ To	address	this,	researchers	are	developing	methods	to	make	machine	learning	

models	more	robust	against	these	uncertainties	and	mismodellings.	

• One	approach	is	to	use	adversarial	training,	where	the	model	is	trained	to	be	
robust	against	adversarial	examples that	are	specifically	designed	to	trick	the	
model.
§ Another	approach	is	to	incorporate	physics-based	constraints	or	priors	into	the	

model	(e.g.	penalty	terms	in	the	loss	function),	to	help	ensure	that	the	model	is	
consistent	with	known	physics.

§ Adversarial	trainings	can	also	be	used	with	detector	data	to	refine	the	ML	models	in	
an	unsupervised	way.



Generative models to replace simulations
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• Generative	models	are	machine	learning	models	that	can	generate	new	data	that	
is	similar	to	the	training	data.	

• In	particle	physics	and	astrophysics,	generative	models	can	be	used	to	generate	
new	simulated	data,	which	can	be	used	to	supplement	or	eventually	replace	
existing	simulations.	
• This	can	save	significant	time	and	resources,	and	can	also	help	address	
uncertainties	and	mismodellings	in	the	simulations.	

• Current	work	cannot	fully-replace	current	simulations	yet,	but	are	more	
suited	for	fast	prototyping.

• Despite	the	limitations,	generative	models	are	a	promising	area	of	research	in	
HEP,	and	have	the	potential	to	revolutionize	the	way	simulations	are	performed	
in	the	field.	
• Although	Stable	Diffusion	shows	promise	for	replacing	simulations	in	HEP	
experiments,	its	current	computational	cost	remains	a	challenge.



Large models and infrastructure

Saúl Alonso-Monsalve 46

• Particle	physics	and	astrophysics	generate	vast	amounts	of	data,	and	machine	
learning	models trained	on	this	data	can	be	very	large	and	complex.	
§ This	requires	significant	computational	resources	and	infrastructure	to	train	and	

deploy	these	models.	
§ Investing	in	large-scale	infrastructure	and	end-to-end	systems	for	machine	learning	in	

particle	physics	and	astrophysics	is	an	important	future	direction.	
• We	are	very	far	away	to	state-of-the-art	
applications:
§ A	typical	deep	learning	model	in	physics	usually	

has	never	more	than	a	few	million	parameters.
§ GPT-3.5	(the	model	behind	ChatGPT)	was	trained	

for	~12-18	months	on	a	supercomputer	with	
~10,000	GPUs	and	~285,000	CPU	cores	(~1	billion	
dollars	to	rent)	and	has	175	billion	parameters.	
Source.

• Beware	of	the	significant	environmental	impact	
caused	by	the	large	carbon	footprint	of	deep	
learning	models.

https://lifearchitect.ai/chatgpt/


Real-time models
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• Finally,	another	important	future	direction	is	developing	machine	learning	
methods that	can	work	in	real-time	or	near-real-time.	

• This	is	especially	important	for	particle	physics	experiments,	where	researchers	
need	to	preselect	(trigger)	data	as	it	is	collected.	

• Developing	machine	learning	algorithms	that	can	operate	in	real-time	is	an	
important	present	and	future	challenge.

• Many	current	applications	(ATLAS,	IceCube,	LIGO,	Dark	Energy	Survey,	etc).
• They	use	specialized	hardware,	such	as	Field-Programmable	Gate	Arrays	
(FPGAs)	or	Graphics	Processing	Units	(GPUs),	to	achieve	the	required	
computational	performance	and	low-latency	response	times.

• They	employ	various	techniques	to	optimize	performance,	such	as	reducing	
the	precision	of	the	model's	parameters (e.g.,	using	16-bit	floating-point	
arithmetic	instead	of	32-bit)	or	using	model	compression	techniques	to	
reduce	the	model's	size	and	memory	footprint.	
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Summary and conclusion
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• Machine	learning	is	an	essential	tool	in	particle	physics	and	astrophysics	
research.

• We	have	discussed	the	foundations	of	machine	learning,	including	neural	
networks.

• We	have	explored	the	different	types	of	machine	learning	and	their	applications	
in	particle	physics	and	astrophysics.

• Challenges	for	future	research	include	dealing	with	sparse	data,	ensuring	
interpretability	and	explainability	of	models,	addressing	uncertainties,	and	
creating	generative	models.

• Development	of	large	models,	infrastructure,	and	real-time	models	are	also	
crucial	for	future	research.

• Overall,	machine	learning	has	opened	up	new	avenues	of	research,	and	
addressing	its	challenges	can	lead	to	a	deeper	understanding	of	the	universe.



• A	visual	introduction	to	machine	learning:	http://www.r2d3.us/visual-
intro-to-machine-learning-part-1/.

• Natural	language	processing	course:	
https://www.youtube.com/playlist?list=PLo2EIpI_JMQvWfQndUesu0nPB
AtZ9gP1o.

• “Catalog”	of	Transformers:	https://arxiv.org/abs/2302.07730.
• Computer	vision	tool	for	anyone	to	use!	:	https://landing.ai.
• Consensus	AI	(evidence	answers,	useful	for	research):		

https://consensus.app.
• Ted	Chiang's	critique	of	the	threat	of	superintelligence:	

https://www.buzzfeednews.com/article/tedchiang/the-real-danger-to-
civilization-isnt-ai-its-runaway.

Interesting links
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http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
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https://arxiv.org/abs/2302.07730
https://landing.ai/
https://consensus.app/
https://www.buzzfeednews.com/article/tedchiang/the-real-danger-to-civilization-isnt-ai-its-runaway
https://www.buzzfeednews.com/article/tedchiang/the-real-danger-to-civilization-isnt-ai-its-runaway
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