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Feynman integrals as hypergeometric functions

Hypergeometric integrals are integrals of the form | u¢g where u is a multivalued function and @ a differential n—form.

By making use of an appropriate integral representation, we can write multiloop Feynman Integrals as hypergeometric integrals.

We use the Baikov representation, which corresponds to the change of variables: k’i — Zf — Dz’
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Hypergeometric functions obey a vector space structure: twisted Intersection numbers of differential 1-forms
cohomology group. )
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Vector space structure characterized by around each P € 7Dw
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Therefore we can introduce a metric, C;; = (¢;| 1)

U Multivariate intersection numbers
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2,)=1 calculation of intersection numbers of (n — 1)—forms

The problem of decomposition into master integrals is turned into 21— — 2

the problem of finding the projections on the basis vectors
using scalar products.

.Generalization of univariate procedure
.Variables need to be ordered and one proceeds one fibration at time

Irrational poles and rational algorithms

. Starting point: rational integrands

. Appearance of non-rational poles in intermediate steps of the calculation Based on:
. Result: intersection numbers are rational functions of the kinematic invariants and of the dimensional regulator
@"z |:> Cancellations must happen in intermediate steps of the calculation
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p(z)—adic expansion

Consists in the series expansion of a rational function in powers of a polynomial

Motivations for purely rational algorithms
. Avoid algebraic bottlenecks

“prime” over the field of rational numbers
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at once using global residue theorem
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This allows to calculate the contributions to (¢; | (pR)p(Z)of all the roots of p(2)

. Cutting-edge techniques require rational algorithms
(e.g. finite fields, rational reconstruction)

Analogy with p—adic numbers
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Formal series expansion of a rational
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