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@ The post-Minkowskian approximation in general relativity
@ On-shell data as natural building blocks (KMOC)

Classical observables on curved background

@ The post-background approximation

@ Strong field amplitudes as natural building blocks )

@ Recovering memory effects neglected perturbatively

@ Relation between 3-points and large gauge transformations

@ Self-force results on plane wave backgrounds

Andrea Cristofoli QMG22



The two-body problem in GR

o Gravitational waves carry fingerprints of a two-body dynamics

1 81 G

Ruw — EgWR = 4

Tu , X=-THx0%8
... however, no exact solution is known!

@ The post-Minkowskian approximation (PM) has gained a
renewed attention after a remarkable state of the art
calculation from scattering amplitudes (Zvi Bern et al.)
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Credit: Tim Pyle
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The post-Minkowskian approximation

@ The change in momentum due to a scattering is

+o0
8ot =5 [ do gasa@)pi ()l (o)

—0o0

Expanding around straight trajectories in the weak field limit

xb(o) = xtorophit.. i H(x(0)) = —167GP" P T p+...

Classical result at 1PM
The Fourier domain computation contains a scattering amplitude
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The KMOC formalism

@ Binary system as superposition of single particle states

) = / 4o (p1) d (p2) b1 (pr) b2 (p2) € 7 |prpa)

@ Classical limit <+ Goldilocks relations 4. < ¢, < s

ENEN

Credit: Ben Maybee, 2105.10268

Main idea (Kosower, Maybee, O'Connell)

Classical observables from on-shell amplitudes to all PM orders

(| STPYS ) = pf + /eiq'bg(mm) (q- p2) ight AL* +
q
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The post-background approximation

@ We have defined a classical observable around Minkowski

+00
Apt = / dod"gap(x(0))p*(0)P°(0) ',  8ap = Napthap

—00

...however, we could have chosen any curved spacetime

8ap = ggfj + ha,B

where ggﬁ is an exact solution to Einstein field equations

Can we recover these expansions around g® from KMOC?
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QFT on curved backgrounds

e Consider QFT in presence of a non trivial background, where
the S-matrix carries information on the background g°

S1u) = [ 406/, p)o(p) (P15 10} ) + -

2-point

We call the building blocks "strong field amplitudes”

PISlpy , (PISIp, k") (PSP, k" k)

KMOC on curved backgrounds

Observables on g% can be computed from strong field amplitudes

(AO) = lim | (| STOS 1) — (1] O |¢)
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Strong field amplitudes

@ The simplest strong field amplitude is a scalar 2-point given by
the quadratic part of the action S[®] on ® = e3P, + e2Popt

5101 = [ dx/= (£ (00,0(00,0" (<) + o)

9?59

/ .
<p|S|p> T 861862

e1=e>=0

@ N-points are defined by the multilinear part of the action.
Hard to compute as they resum infinite amplitudes on 7

=
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2-points on stationary backgrounds

@ Consider the KG equation on a stationary background
(O + m?)d(x) = h*"(x)0,,0,P(x) + ...

We can apply a WKB approximation (Kol, O'Connell, Telem)

X (x1) = 2/\/’/ 3(2P - q)3(2p - q)e /M h (q)pup,
q

Relation with traditional amplitudes (Adamo, C., Tourkine)

2-points on g° as eikonal amplitudes. The quadratic part of the
action resums an infinite number of amplitudes in Minkowski

(PISlp) =N g(pé = po)/ e—iaLxt (e"X(XL)/h _ 1>
AL

X

v

Andrea Cristofoli QMG22




2-points on Kerr

e (p'|S|p) on Kerr depends on the following eikonal amplitude

l(q1) = /d2X¢€_iqLﬁ/h )L —ar|®x +aL
@ Analytic continuation provides a KLT-like factorization

b(q1) = — (R ) K ()"

i 1— e?mB —elm (—1 + ¢2'™P)
elme (—1+ e2mB) 1 - e2in(ath)

e Complex poles at iax(s) = n, n € N (Adamo, C., Tourkine)
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2-point on plane wave backgrounds

@ We can also consider "strong field amplitudes” on non
stationary backgrounds like gravitational plane waves

ds? = 2 dudv — Hap (1) xx? ( du)? — dxtdx*
@ A scalar 2-point is given by

ar b (pl. — S SR
(pistpy = TOLPEZPe) it
| det(c)|h

where ¢ is a 2 x 2 matrix encoding classical memory effects

N
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Observables from 2-points

@ 2-points can be used to construct a semiclassical final state

Sly) = /d¢ (P, p) 26(p) (P IS P) |P")

@ For Schwarzschild and Kerr, stationary phase arguments gives

Slw) = [ d*pon(p—O(B)lp) = AP = Ox(b)+ .
e For plane waves, memory effects appear (Adamo, C., llderton)

Ap =8, El(x)2® +... , Ei=bl+VGecix
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Comparison with on-shell amplitudes

@ The 2-point on a plane wave background shows that the
impulse has a linear term in x ~ VG (Adamo, C., llderton)

Ap" =V Gclz + ..

@ From a perturbative approach, the leading term should be a
4-point Compton amplitude... but this scale as k2 ~ G

ap' = [ do(k)5(2q- p)5* 29k~ )
q

xa(k = q)a(k)e = igh AL ~ G

Solution (C., llderton, Elkhidir, O'Connell)

3-point amplitudes on Minkowski are actually non vanishing when
large gauge transformations are included in the LSZ reduction
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Beyond geodesics motion

@ Consider a 3-point amplitude for a scalar particle emitting a
graviton on a plane wave background (Adamo, llderton)

ik IV(X)
h3/2 /|E( N

[ 0(x—y)P(y) K(y)
Vi) = /y p+ — ki

(0", K" S |p) ~ o (ki x)PH(x)P" (x)

@ If we use this strong field amplitude with KMOC we obtain
observables containing a series of all order PM contributions.
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Strong field waveform

o Consider this operator for the radiation emitted on Z+

ih2 00
Ox(u,r,8) = — — [ dwe ™4 C(k) ay(k
a(u, r,%) el we (k) ay(k) + cc
he/icity k=hwX

@ The waveform Wj; is the leading coefficient in 1/r

S) — I A —iwu -n —n
Wiwep(u,X) = ol ), dwe k[uz;‘y] k[aep]

< [ d9(p) (6] ST[p) (P, K7 S ) [konus + cc.
LO
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Strong field waveform

General result - 1PB (post-background)

K2, = . o
Wwep = XX /y (u—V(y)) {Dz TS]V] (X,y) — DTpl]V](X,y)}

) Pua(%, ¥)Pps(R,y)P(y) PP (y) = 31pm’
o |E(y)|

Impulsive wave for v ~ v/GA|u| (Adamo, C., llderton, Klisch)

/12 _
W _ ’izp-&- 6+5+(_1)(a)5a 8 872 v |og (U VY 1)
prop = 2 g lnle PI™vl 2 e —]
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Conclusion

@ Strong field amplitudes are the natural building blocks to
study perturbation theory around non trivial backgrounds

@ Observables from the classical limit of strong field amplitudes )

@ Recovering memory effects which were neglected

@ 3-point amplitudes are non vanishing and related to memory

@ Self-force results from strong field amplitudes

.

Main message

We can gain a deeper understanding of perturbation theory on a
flat spacetime by studying amplitudes on curved backgrounds
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