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Introduction

Feynman integrals and string amplitudes are fruitful settings for studying
special functions.

We obtain special types of iterated integrals by working order-by-order in
the dimensional regulator ϵ. These include:

Multiple polylogarithms (MPLs).
Elliptic multiple polylogarithms (eMPLs).
Iterated integrals of modular forms.

In this talk, we focus on Modular Graph Forms (MGFs).
Show up in genus one closed-string amplitudes.
Conjecturally evaluate to single-valued MZV’s at the cusp τ → i∞.
Can be thought of as versions of single-valued eMZV’s.
MGFs are non-holomorphic modular forms.
Can be written in terms of non-holomorphic combinations of iterated integrals
of Eisenstein series.
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String amplitudes and special functions

String amplitudes admit an expansion in genus: [Figures taken from PhD thesis of J. Gerken]

The boundaries may be conformally mapped to punctures, leading to:
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String amplitudes and special functions

Various types of special functions show up depending on whether we have
open/closed strings, and depending on the genus:

Open string Closed string

g = 0

g = 1

Disk:

(MZV’s)

Cylinder:

(eMZV’s)

Riemann sphere:

(sv. MZV’s)

Torus:

MGF’s 
(≈ sv. eMZV’s)

In this talk we consider the MGF’s, which can be expressed in terms of
non-holomorphic combinations of iterated integrals of Eisenstein series.
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Introduction: Connection to Feynman integrals
Various Feynman integrals can be solved in terms of iterated integrals of
modular forms: e.g.: [Adams, Weinzierl, 1704.08895],

[Adams, Weinzierl, arXiv:1802.05020]

I (f1, f2, . . . , fn; q) = (2πi)n
∫ τ

τ0

dτ1 f1 (τ1)
∫ τ1

τ0

dτ2 f2 (τ2) . . .
∫ τn−1

τ0

dτn fn (τn)

(In this talk we do not consider z-dependence, in which case we would consider
kernels f (k)(z | τ) from the Kronecker-Eisenstein series.)
Such representations can sometimes be obtain from ϵ-factorized differential
equations of the form (d + ϵA)I = 0.
Integrating a modular form does not usually result in another modular form.∫ i∞

τ

dτ1 (τ1)
j Gk (τ1)

τ→−1/τ−→ (−1)j
(∫ i∞

τ

−
∫ i∞

0

)
dτ1 (τ1)

k−j−2 Gk (τ1)

The contributions from
∫ i∞
0 are known as multiple modular values (MMV’s.)

We can construct non-holomorphic combinations of iterated Eisenstein
integrals that do yield modular forms. We study these special combinations
in this talk!
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Multiple Modular Values (MMV’s)

MMV’s are numbers that extend beyond the realm of Multiple Zeta Values
(MZV’s). For example, we have:

m
[
j1
k1

]
=

∫ i∞

0
dτ1 τ

j1
1 Gk1 (τ1)

m
[
j1 j2
k1 k2

]
=

∫ i∞

0
dτ2 τ

j2
2 Gk2 (τ2)

∫ i∞

τ2

dτ1 τ
j1
1 Gk1 (τ1)

The following examples at weight ≥ 14 contain new numbers: [Brown,

1904.00179]

m
[
0 0
4 10

]
=

7613π14

1361455395300
− 4
27

π2ρ−1 (f3f9)−
1024π14c (∆12, 12)

652995

m
[
1 0
4 10

]
= − 4iπ11ζ3

2525985
− iπ5

243
ζ9 +

11iπ3

270
ζ11 −

128iπ13Λ (∆12, 12)
1913625

(The completed L-function of a holomorphic cusp form ∆(τ) =
∑∞

n=1 a(n)q
n is

Λ(∆, t) = (2π)−tΓ(t)
∑∞

n=1 a(n)n
−t, which converges absolutely for Re(t) > s + 1

2 and can be extended to a

meromorphic function.)
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Modular Forms
MGFs can be thought of as generalizations of Eisenstein series. Let us
briefly review these.

The holomorphic Eisenstein series Gk(τ) is given by:

Gk(τ) =
∑

(m,n)∈Z2\{(0,0)}

1
(m+ nτ)k

=
∑
p∈Λ′

1
pk

, k ≥ 4 ,

where the discrete momentum p = mτ + n ∈ Λ′ and Λ′ = (Zτ + Z)\{0}.
The Eisenstein series Gk(τ) is a modular form of weight k:

Gk

(
aτ + b
cτ + d

)
= (cτ + d)kGk(τ) for

(
α β
γ δ

)
∈ SL2(Z).

Modular forms admit q-series, where q = e2πiτ , due to T-invariance
(τ → τ + 1), e.g:

G4(τ) = 2ζ4
(
1+ 240q+ 2160q2 + 6720q3 + 17520q4 +O(q5)

)
If the zeroth power in q has coefficient zero, we call it a cusp form.
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Non-Holomorphic Modular Forms
The non-holomorphic Eisenstein series Ek(τ) is given by:

Ek(τ) =
(
Im τ

π

)k∑
p∈Λ′

1
|p|2k

, k ≥ 2

It is modular invariant, such that:

Ek
(
aτ + b
cτ + d

)
= Ek(τ) for

(
α β
γ δ

)
∈ SL2(Z).

More generally, a non-holomorphic modular form h(τ) of weight (a, b)
satisfies:

h
(
ατ + β

γτ + δ

)
= (γτ + δ)a(γτ̄ + δ)bh(τ)

The simplest example is Im (τ ′) = Im(τ)
|γτ+δ|2 which is a non-holomorphic

modular form of weight (−1,−1).
Non-holomorphic modular forms admit expansions in q, q̄ and Im(τ):

h(τ) =
∑
n,m≥0

∑
r∈Z

cn,m,r Im(τ)r qnq̄m .

The coefficients cn,m,r contain odd zeta’s for Ek and MZV’s in general.
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Modular Graph Forms
[D’Hoker, Gürdogan, Green, Vanhove 1512.06779], [D’Hoker, Green 1603.00839]

Modular Graph Forms (MGFs) arise in the low-energy (α′-expansion) of
genus-one closed string amplitudes. (In type II or the Heterotic string.)
For dihedral graphs the definition of MGFs reduces to the following nested
sums over discrete torus momenta:

. ... C+
[ a1 ... aR
b1 ... bR

]
(τ) =

( R∏
j=1

(Im τ)aj

πbj

) ∑
p1,...,pR∈Λ′

δ(p1+ . . .+pR)
pa11 p̄

b1
1 . . . paRR p̄

bR
R

.

In general MGF’s can be represented by a connected graph of discrete momenta,
with a momentum conserving delta-function for each vertex.
We have the special cases:

Gk(τ) = Im(τ)−kC+
[
k 0
0 0

]
(τ) , Ek(τ) = C+

[
k 0
k 0

]
(τ) .

MGF’s are non-holomorphic modular forms:

C+
[
A
B

]( aτ+b
cτ+d

)
= (cτ̄ + d)|B|−|A|C+

[
A
B

]
(τ) ,

where A = (a1, . . . , aR) and B = (b1, . . . , bR) are non-negative integers.
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Iterated Eisenstein Integrals
MGFs satisfy various non-trivial relations: e.g. [J. Gerken, PhD thesis]

C+
[
1 1 1
1 1 1

]
(τ) = E3(τ) + ζ3 , [D. Zagier, Notes on Lattice Sums]

C+
[
1 1 1 1
1 1 1 1

]
(τ) = 24C+

[
2 1 1
2 1 1

]
(τ)− 18E4(τ) + 3E2(τ)2 ,

which are difficult to obtain from the definition as a lattice-sum.
Relations between MGF’s can be exposed by writing them in terms of
iterated integrals. Let us define the following kernels:

ω+

[
j
k ; τ, τ1

]
=

dτ1
2πi

(
τ−τ1

4π Im(τ)

)k−2−j
(τ̄−τ1)

jGk(τ1) ,

ω−
[
j
k ; τ, τ1

]
= −dτ̄1

2πi

(
τ−τ̄1

4π Im(τ)

)k−2−j
(τ̄−τ̄1)

jGk(τ1) ,

where 0 ≤ j ≤ k − 2. These kernels are modular forms with vanishing
holomorphic modular weight. Next, consider iterated integrals of the type:

β+

[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
=

∫ i∞

τ

ω+

[
jℓ
kℓ
; τ, τℓ

]
. . .

∫ i∞

τ3

ω+

[
j2
k2
; τ, τ2

] ∫ i∞

τ2

ω+

[
j1
k1
; τ, τ1

]
,

β−

[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
=

∫ −i∞

τ̄

ω−

[
jℓ
kℓ
; τ, τℓ

]
. . .

∫ −i∞

τ̄3

ω−

[
j2
k2
; τ, τ2

] ∫ −i∞

τ̄2

ω−

[
j1
k1
; τ, τ1

]
.
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Iterated Eisenstein Integrals
These integrals fail to be modular forms by:

β±

[
j1 ... jℓ
k1 ... kℓ

; aτ+bcτ+d

]
=

( ℓ∏
i=1

(cτ̄+d)ki−2−2ji
)
β±

[
j1 ... jℓ
k1 ... kℓ

; τ
] (

mod lower depth
& MMV’s

)
.

The non-holomorphic Eisenstein series can be written as :

Ek(τ) = − (2k−1)!
(k−1)!2

{
β+

[
k−1
2k ; τ

]
+ β−

[
k−1
2k ; τ

]
− 2ζ2k−1

(2k−1)(4π Im(τ))k−1

}
.

Because Ek(τ) is modular invariant, we identify the modular invariant
combination:

βeqv[ k−1
2k ; τ

]
= β+

[
k−1
2k ; τ

]
+ β−

[
k−1
2k ; τ

]
− 2ζ2k−1

(2k−1)(4π Im(τ))k−1

More generally, we have that:

C+[ 0 a
0 b

]
(τ) = − (2i)b−a(a+ b− 1)!

(a− 1)!(b− 1)!

(
β+

[ a−1
a+b ; τ

]
+ β−

[ a−1
a+b ; τ

]
− 2ζa+b−1

(a+ b− 1)(4π Im(τ))b−1

)
.

and we may identify the combination within the brackets as βeqv
[ a−1
a+b ; τ

]
.
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Iterated Eisenstein Integrals
We seek to generalize to higher-depth βeqv[

...

... ; τ ], which are modular forms:

βeqv
[
j1 ... jℓ
k1 ... kℓ

; aτ+bcτ+d

]
=

( ℓ∏
i=1

(cτ̄+d)ki−2−2ji
)
βeqv

[
j1 ... jℓ
k1 ... kℓ

; τ
]
.

A defining property is the holomorphic differential equation:

2πi(τ−τ̄)2∂τβ
eqv
[
j1 ... jℓ
k1 ... kℓ

; τ
]
=

ℓ∑
i=1

(ki−ji−2)βeqv
[
j1 ... ji+1 ... jℓ
k1 ... ki ... kℓ

; τ
]

− δjℓ,kℓ−2(τ−τ̄)kℓGkℓ(τ)β
eqv
[
j1 ... jℓ−1
k1 ... kℓ−1

; τ
]
(mod βsv

∆ )

We may again draw inspiration from MGF’s. For example, it turns out that:

C+
[
2 1 1
2 1 1

]
= −126βeqv[ 3

8

]
− 18βeqv[ 2 0

4 4

]
,

C+
[
3 2 1
1 2 1

]
=
279
2

βeqv[ 5
10

]
+ 30βeqv[ 3 1

6 4

]
+
15
2
βeqv[ 4 0

6 4

]
,

2i Im C+
[
0 1 2 2
1 1 0 3

]
= 60(βeqv[ 0 3

4 6

]
−βeqv[ 1 2

6 4

]
)− 270(βeqv[ 1 2

4 6

]
−βeqv[ 2 1

6 4

]
)

+ 390(βeqv[ 2 1
4 6

]
−βeqv[ 3 0

6 4

]
)− 3ζ3βeqv[ 1

4

]
,
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Iterated Eisenstein Integrals

Let us briefly consider the origin of the representations of the C+[
...
... ](τ) in

terms of β+[
...
... ; τ ] and β−[

...

... ; τ ], which we’ll rewrite as βeqv[
...
... ; τ ].

The main idea is that repeated actions of so-called Maass operators
∇τ = 2i(Im τ)2∂τ simplify the lattice sums.

(π∇τ )
3 C+

[
2 1 1
2 1 1

]
=
9
10
(
π∇3

τ

)
E4 − 6(Im τ)4G4 (π∇τ )E2

By plugging in the depth-one integral representations for Gk and Ek , and
integrating, we obtain representations in terms of iterated integrals.

Unfortunately, at higher depths the collections of MGF’s and βeqv[
...
... ; τ ] are

not one-to-one. Only particular combinations of βeqv[
...
... ; τ ] appear in MGF’s,

subject to Tsunogai’s derivation algebra.

To investigate this point further, let us switch to the generating series point
of view.
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Generating series of Modular Graph Forms
A genenerating series of convergent MGFs (that do not simplify under
holomorphic subgraph reduction) was defined in [Gerken, Kleinschmidt,
Schlotterer, 1911.03476, 2004.05156]:

Yτ
η⃗ (σ | ρ) = (τ − τ̄)n−1

∫ ( n∏
j=2

d2zj
Im τ

)
exp

(
n∑

1≤i<j

sijG (zi − zj, τ)

)

× σ
[
φτ (zj, ηj, η̄j)

]
ρ [φτ (zj, (τ − τ̄)ηj, η̄j)] ,

where the n punctures zj are integrated over a torus of modular parameter
τ , and the ηj and η̄j are formal variables of the generating series.
The integrals Yτη⃗ are indexed by permutations σ, ρ ∈ Sn−1 that act on the
subscripts 2, 3, . . . , n of the {zj, ηj} variables and leave z1 inert.
The integrand involves doubly-periodic functions φτ (zj, . . .) =
φτ (zj + 1, . . .) = φτ (zj + τ, . . .), build out of products of the
Kronecker-Eisenstein series:

Ω(z, η, τ) = exp

(
2πiη

Im z
Im τ

)
θ′(0, τ)θ(z + η, τ)

θ(z, τ)θ(η, τ)
.

The exponent (Koba-Nielsen factor) features the closed-string Green
function G(z, τ) on the torus.
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Generating series of Modular Graph Forms
On the one hand, these integrals may be computed by performing a Fourier
transform, which leads to sums over discrete momenta and which yields
expressions in terms of MGFs.

Alternatively, we note that the (KZB-type) differential equations are of the
form:

2πi∂τYτ
η⃗ (σ|ρ) =

∑
α∈Sn−1

{
− 1
(τ−τ̄)2

Rη⃗(ϵ0)ρ
α +

∞∑
k=4

(1−k)(τ−τ̄)k−2Gk(τ)Rη⃗(ϵk)ρ
α

}
Yτ
η⃗ (σ|α) ,

and can be solved in terms of a generating series

Yτ
η⃗ =

∑
P

Rη⃗(ϵ[P])

( ∑
P=ABC

κ[A; τ ]β−
[
Bt; τ

]
β+[C; τ ]

)
︸ ︷︷ ︸
(collecting holo/antiholo. contributions)

exp

(
−
Rη⃗ (ϵ0)
4π Im(τ)

)
Ŷ i∞η⃗︸ ︷︷ ︸

(initial value)

The first sum is over words P = j1 ··· jℓ
k1 ··· kℓ of length ℓ ≥ 0 with ki ≥ 4 even and

0 ≤ ji ≤ ki − 2, while the second sum is over deconcatenations of P.
The term κ[X; τ ] is a purely antiholomorphic term which carries
combinations of MZV’s and which can be determined through reality
properties of the MGF’s.
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Generating series of Modular Graph Forms
The coefficients ϵ[P] are defined by:

ϵ[P] = ϵ
[
j1 j2 ... jℓ
k1 k2 ... kℓ

]
=

( ℓ∏
i=1

(−1)ji(ki−1)
(ki−ji−2)!

)
ϵ
(kℓ−2−jℓ)
kℓ · · · ϵ(k2−2−j2)k2 ϵ

(k1−2−j1)
k1 ,

where the quantities ϵ(j)k are defined using the shorthand:

ϵ
(j)
k = adjϵ0 (ϵk) = [ϵ0, [. . . , [ϵ0, ϵk]]. . .]︸ ︷︷ ︸

j-times

The notation Rη⃗(ϵ[P]) indicates that we are considering a particular matrix
representation of the generators ϵk . The ϵk-derivations satisfy various
relations furnished by Tsunogai’s derivation algebra: [Tsunogai 1995, . . . ,

Pollack 2009]0 = ϵ
(k−1)
k , k ≥ 4 even ,

0 = [ϵ4, ϵ10]− 3[ϵ6, ϵ8] ,

0 = −462
[
ϵ4, [ϵ4, ϵ8]

]
− 1725

[
ϵ6, [ϵ6, ϵ4]

]
− 280[ϵ8, ϵ

(1)
8 ]

+ 125[ϵ6, ϵ
(1)
10 ] + 250[ϵ10, ϵ

(1)
6 ]− 80[ϵ12, ϵ

(1)
4 ]− 16[ϵ4, ϵ

(1)
12 ]
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Tsunogai derivation algebra

The Tsunogai derivation algebra has the following impact on the generating
series.

1. Relations like [ϵ4, ϵ10]− 3 [ϵ6, ϵ8] = 0 project out cusp-form contributions to
non-holomorphic modular forms in Jeqv , in other words there are no∫
τ

dτ1∆k (τ1)

2. Therefore, MGF’s and the βeqv[
...
... ; τ ] are not one-to-one. It turns out that a

‘full’ set of βeqv[
...
... ; τ ] requires (iterated) integrals of cusp forms starting

from k ≥ 14.
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Generating Series of βeqv

We now consider a generating series for the βeqv[
...
... ; τ ]:

Jeqv({ϵk}; τ) =∑
P

ϵ[P]βeqv[P; τ ]

The central result of our paper is that:

Jeqv({ϵk}; τ) = J+({ϵk}; τ)Bsv({ϵk}; τ)ϕsv(J̃−({ϵk}; τ)) .
which makes explicit a construction in [Brown, 1707.01230, 1708.03354] of
these integrals. The holomorphic / antiholomorphic contributions are
packaged in the following way:

J±
(
{ϵk}; τ

)
=
∑
P

ϵ[P]β±[P; τ ] .

The tilde of J̃− ({ϵk} ; τ) instructs us to reverse the words:

ϵ
(j1)
k1 . . . ϵ

(jℓ)
kℓ → ϵ

(jℓ)
kℓ . . . ϵ

(j1)
k1

We furthermore have Bsv ({ϵk} ; τ) =
∑

P ϵ[P]b
sv[P; τ ], with

bsv
[
... ji ...
... ki ...

; τ
]
=

ki−2−ji∑
pi=0

ji+pi∑
ℓi=0

(
ki−2−ji
pi

)(
ji+pi
ℓi

)
(−2πiτ̄)ℓi
(4πIm(τ))pi

csv
[
... ji−ℓi+pi ...
... ki ...

]
,
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Bsv ({ϵk} ; τ)
The new ingredient BSV (ϵk) is specified by the csv which are composed out
of single-valued MZV’s. For example:

csv
[
0 1
4 6

]
= ζ3

907200 , csv
[
1 0
4 6

]
= − ζ3

226800 ,

csv
[
0 3
4 6

]
= − ζ5

7200 , csv
[
1 2
4 6

]
= ζ5

21600 , csv
[
2 1
4 6

]
= − ζ5

21600 ,

csv
[
0 4
4 6

]
= − ζ23

315 , csv
[
1 3
4 6

]
=

ζ23
1260 , csv

[
2 2
4 6

]
= − ζ23

1890 ,

csv
[
1 4
4 6

]
= 7ζ7

360 , csv
[
2 3
4 6

]
= − 7ζ7

720 , csv
[
2 4
4 6

]
= 2ζ3ζ5

15 .

csv
[
2 2 4
4 4 6

]
= − 1

450
ζsv
3,5,3 −

2
45

ζ23ζ5 −
221
21600

ζ11 ,

csv
[
2 4 4
4 6 6

]
=

1
3750

ζsv
5,3,5 +

2
375

ζ3ζ
2
5 +

1804427
124380000

ζ13 ,

csv
[
2 2 6
4 4 8

]
= − 1

1764
ζsv
3,7,3 +

1
1470

ζsv
5,3,5 −

2
63

ζ23ζ7 −
137359
24378480

ζ13 ,

Conjecturally:

csv
[
k1−2 ... kℓ−2
k1 ... kℓ

]
=

(
ℓ∏
i=1

1
1− ki

)
sv (fk1−1 . . . fkℓ−1) mod fewer fi
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The change of alphabet ϕsv

The map ϕsv applies a change of alphabet to the ϵ[P]. For example:

ϕsv(ϵ2) = ϵ4 +
ζ3
252

([
ϵ
(2)
6 , ϵ4

]
− 3

[
ϵ
(1)
6 , ϵ

(1)
4

]
+ 6

[
ϵ6, ϵ

(2)
4

])
+ . . .

More generally, the map ϕsv can be described through a conjugation with
another generating series: ϕsv (ϵk) = MSVϵk

(
MSV

)−1, which is given by:
MSV (zi) =

∑
ℓ≥0

∑
m1,...,mℓ∈2N+1

sv (fm1 fm2 . . . fmℓ
) zm1zm2 . . . zmℓ

Here the fi are letters in the so-called f -alphabet of (motivic) multiple zeta
values, and the zj are a new class of operators in the derivation algebra
which normalize the set {ϵk}. For example:

[z3, ϵ4] =
1
504

([
ϵ
(2)
6 , ϵ4

]
− 3

[
ϵ
(1)
6 , ϵ

(1)
4

]
+ 6

[
ϵ6, ϵ

(2)
4

])
Putting things together, we find (in shorthand notation):

Jeqv = J+BsvMsṽJ− (Msv)−1
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Iterated Integrals of Holomorphic Cusp Forms

We may generalize the construction by relaxing the constraints from
Tsunogai’s derivation algebra. In this case we also require contributions
from holomorphic cusp forms ∆k(τ) = q+O

(
q2
)
in the modular

completion. For example: [Brown, 1407.5167, 1707.01230]
[Dorigoni, Kleinschmidt, Schlotterer, 2109.05018]

βeqv[ 1 4
6 8 ; τ

]
= (β±andMZVs)

+
1

52920000
Λ (∆12, 12)
Λ (∆12, 10)

(
β+

[ 5
∆12

; τ
]
− β−

[ 5
∆12

; τ
])

βeqv[ 2 3
4 10 ; τ

]
= (β±andMZVs)

− 1
122472000

Λ (∆12, 12)
Λ (∆12, 10)

(
β+

[ 5
∆12

; τ
]
− β−

[ 5
∆12

; τ
])

The coefficients contain ratios of (critical and non-critical) L-values Λ(∆k,n.c.)
Λ(∆k,crit.)

.
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Conclusion and outlook

MGFs are an interesting class of non-holomorphic modular forms, which
have (conjecturally s.v.) MZV’s in the coefficients of their q-expansions.

We provided the dictionary between MGF’s and Brown’s equivariant iterated
Eisenstein integrals, and provide evidence for Brown’s conjecture that
equivariant iterated Eisenstein integrals contain all modular graph forms.

Future work: explore similar generating-function approach to z-dependent
elliptic MGFs / single-valued elliptic polylogarithms and their
iterated-integral representation.

Future work: explore connections to the recent one-loop KLT formula?
[Stieberger, 2212.06816]
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