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Introduction

@ Feynman integrals and string amplitudes are fruitful settings for studying
special functions.

@ We obtain special types of iterated integrals by working order-by-order in
the dimensional regulator . These include:
e Multiple polylogarithms (MPLs).
o Elliptic multiple polylogarithms (eMPLs).
o lIterated integrals of modular forms.

@ In this talk, we focus on Modular Graph Forms (MGFs).

e Show up in genus one closed-string amplitudes.

Conjecturally evaluate to single-valued MZV’s at the cusp 7 — ico.

Can be thought of as versions of single-valued eMZV’s.

MGFs are non-holomorphic modular forms.

Can be written in terms of non-holomorphic combinations of iterated integrals
of Eisenstein series.
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String amplitudes and special functions

@ String amplitudes admit an expansion in genus:  [Figures taken from PhD thesis of J. Gerken]
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@ The boundaries may be conformally mapped to punctures, leading to:
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String amplitudes and special functions

@ Various types of special functions show up depending on whether we have
open/closed strings, and depending on the genus:

Open string Closed string
Disk: a Riemann sphere:
g=0 (MzV’s) v (sv. MZV’s)
Cylinder: Torus:
g=1 (eMzV’s) MGF’s
(= sv. eMZV’s)

@ In this talk we consider the MGF’s, which can be expressed in terms of
non-holomorphic combinations of iterated integrals of Eisenstein series.
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Introduction: Connection to Feynman integrals

@ Various Feynman integrals can be solved in terms of iterated integrals of
modular forms: e.g.: [Adams, Weinzierl, 1704.08895],
[Adams, Weinzierl, arXiv:1802.05020]
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(In this talk we do not consider z-dependence, in which case we would consider
kernels f¥)(z | ) from the Kronecker-Eisenstein series.)

@ Such representations can sometimes be obtain from e-factorized differential
equations of the form (d + ¢A)/ = 0.

@ Integrating a modular form does not usually result in another modular form.

/ Tl () G () T (1y </ - /ooc> dry (71) 77 G (71)

@ The contributions from fém are known as multiple modular values (MMV’s.)

@ We can construct non-holomorphic combinations of iterated Eisenstein
integrals that do yield modular forms. We study these special combinations
in this talk!
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Multiple Modular Values (MMV’s)

@ MMV’s are numbers that extend beyond the realm of Multiple Zeta Values
(MZV’s). For example, we have:

ico X
m[ﬁ} :/ dr1 71 Gy, (1)
0
o ico ioco .
mik]= | anddoum) [ ando.m
T2
@ The following examples at weight > 14 contain new numbers: [Brown,
1904.00179]

7613714 4 10247%¢ (Aqy, 12)
001 __ 7o % 2 _1 . 12,
m[25] = T3g1455395300 277 7 U) 652995
4ixties  ind 11jr’ 128i713A (A, 12)
10 _ _ ?
m 3] = 3575085 ~ 2430 T 270 1913625

(The completed L-function of a holomorphic cusp form A(7) = -2, a(n)q" is
A(A, t) = (2m) 7T (t) o5, a(n)n™ ", which converges absolutely for Re(t) > s + 3 and can be extended to a

meromorphic function.)
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Modular Forms

@ MGFs can be thought of as generalizations of Eisenstein series. Let us
briefly review these.

@ The holomorphic Eisenstein series Gi(7) is given by:
Gi(r) = E # = § l k> 4
(m+ nT)k pk T
(m,n)€Z2\{(0,0)} pEN

where the discrete momentum p = m7 +n € N and N = (Z71 + Z)\{0}.
@ The Eisenstein series G(7) is a modular form of weight k:

aT+b _ k a B
eh (CTH’) = (c7 + d)¥Gy(r) for (7 5) € SL,(Z).

@ Modular forms admit g-series, where g = e*™'", due to T-invariance
(r—=74+1),eq:
Ga(7) = 2¢4 (1 + 240q + 2160¢* + 6720g° + 17520¢* + O(q°))

@ If the zeroth power in g has coefficient zero, we call it a cusp form.
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Non-Holomorphic Modular Forms

@ The non-holomorphic Eisenstein series E,(7) is given by:

Bilr) = CmT) RN

pen
@ It is modular invariant, such that:

ar + b - o B
(a+d) =Fi(r) for (47) € SLa(2)
@ More generally, a non-holomorphic modular form h(7) of weight (a, b)
satisfies: 8
aT +
h = U(vF +6)°h
(S225) = + 667+ 00)
@ The simplest example is Im (7/) = IV":(MZ which is a non-holomorphic

modular form of weight (—1, —1).
@ Non-holomorphic modular forms admit expansions in g, g and Im(7):

= Z ch,mvrlm(T)“q”a’”.

n,m>0 reZz

The coefficients ¢, , contain odd zeta’s for £, and MZV’s in general.
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Modular Graph Forms

[D’Hoker, Gurdogan, Green, Vanhove 1512.06779], [D'Hoker, Green 1603.00839]
@ Modular Graph Forms (MGFs) arise in the low-energy (o/-expansion) of
genus-one closed string amplitudes. (In type Il or the Heterotic string.)
@ For dihedral graphs the definition of MGFs reduces to the following nested
sums over discrete torus momenta:

C_Q\ C+[Z1 ---ZR](T): (ﬁ(|m7)01> Z 5(P1+.-.+PR) ]
- 1 ... be b; a1 7b1 ar 7br
— =1 " o een PUPL - PRPR

@ In general MGF’s can be represented by a connected graph of discrete momenta,
with @ momentum conserving delta-function for each vertex.
@ We have the special cases:

Gy(7) = Im(T)_kC+[/68](T)7 Ex(7) :C+M8](7).
@ MGF’s are non-holomorphic modular forms:

cr[41(28) = (7 + ) He [4](n),

where A = (ai,...,ag) and B = (by, ..., bg) are non-negative integers.
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Iterated Eisenstein Integrals

@ MGFs satisfy various non-trivial relations: e.g. [J. Gerken, PhD thesis]

C*t[111](r) =Es(r) + (s, [D. Zagier, Notes on Lattice Sums]
CH[1111)(r) =24C* [311](7) — 18E4(r) + 3Ea(7)?,
which are difficult to obtain from the definition as a lattice-sum.

@ Relations between MGF’s can be exposed by writing them in terms of
iterated integrals. Let us define the following kernels:

; drm T—T71 k=2=] _ i
j- _ 41 o
w+[k'7—’ Tl] 27ri(47r|m(7)) (F=11) Ge(m),

dry ( T—T1

o lhinn] =5

) e,

47 Im(7

where 0 < j < k — 2. These kernels are modular forms with vanishing
holomorphic modular weight. Next, consider iterated integrals of the type:

o . ioo . ico . ioo .
ﬂ+[f}1 i jjji’j;r] =/ w+[’ki;7,n} / w+[{émn]/ w+[{}1;77ﬁ} ;
T T T
o . —ioco . ’ —ioco X ’ —ioco i
B- [{}1 {(22 :::;f;;T] :/_ w— [{(i;T,T[] / w— [’kzz;T,Tz]/_ w— [{}1;7,71] .
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Iterated Eisenstein Integrals

@ These integrals fail to be modular forms by:

14
< Je.ar+b | _ = ki—2—2j; e mod lower depth
5i[ ke c'r+d} = (H(CT+d) >Bi[k1 kg'T} (M M) -

i=1

@ The non-holomorphic Eisenstein series can be written as :
(k1) 2Cok-1
E(m) = (k—1)12 Belladirl + 8- 1% - (2k=1)(4m Im(7))*=1 [~

@ Because Ei(7) is modular invariant, we identify the modular invariant
combination:

B9 ir] = B [9i7] + B-[150i7] -
@ More generally, we have that:

c*(85)r) = - BB (s [oidie] + 5 [35ki]

_ 2Ca+b—1
(a+b—1)(4rIm(r))>-1 )"
and we may identify the combination within the brackets as 5°4¥ [Z;; ;7]
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Iterated Eisenstein Integrals

@ We seek to generalize to higher-depth 5°[; 7], which are modular forms:

£
g bt 3] = (Trar— o [ i)

i=1

@ A defining property is the holomorphic differential equation:
2ri(r—7) 0.6 [ 7] = Z(k, —ji=2)B° [B it ]
= kg 2(T—7) G (1) [ 1 7] (o )
@ We may again draw inspiration from MGF’s. For example, it turns out that:
c*[311) = —1265 3] 185 3]
79 eqv eqv 15 eqv
1] = T[] + 305 (3] + 5 6
2 0
3

e &
] =60(B°[93] =B [§3]) — 270(3°0 [ § 2
+390(8°0[21] —pev[29]) - 3GV [1]

il
J =&
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Iterated Eisenstein Integrals

@ Let us briefly consider the origin of the representations of the C*[::](7) in
terms of S, [;7] and B_[; 7], which we'll rewrite as 5°V[:; 7].

@ The main idea is that repeated actions of so-called Maass operators
V., = 2i(Im )20, simplify the lattice sums.

9

(nv.)Ct[311] = 15 (7V3) Ea — 6(Im 7)*Cq (7V,) Ey

@ By plugging in the depth-one integral representations for G, and Ey, and
integrating, we obtain representations in terms of iterated integrals.

@ Unfortunately, at higher depths the collections of MGF’s and 5°%V[::; 7] are
not one-to-one. Only particular combinations of 5°V[::; 7] appear in MGF’s,
subject to Tsunogai’s derivation algebra.

@ To investigate this point further, let us switch to the generating series point
of view.
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Generating series of Modular Graph Forms

@ A genenerating series of convergent MGFs (that do not simplify under
holomorphic subgraph reduction) was defined in [Gerken, Kleinschmidt,
Schlotterer, 1911.03476, 2004.05156]:

Yi(o|p)=(r—7)" /<H|mzj>exp<ZSUG(Z;—Z/,T))

1<i<y
x o [ @ )] pLe™ (21 (= P )]
where the n punctures z; are integrated over a torus of modular parameter
7, and the 7; and 7; are formal variables of the generating series.
@ The integrals Yg are indexed by permutations o, p € S,_; that act on the
subscripts 2,3, ..., n of the {z;,7;} variables and leave z; inert.
@ The integrand involves doubly-periodic functions ¢ (z,...) =
0 (z+1,...)=¢" (z7+1,...), build out of products of the
Kronecker-Eisenstein series:

Imz\ 6'(0,7)0(z+n,7)
Q = 2 A .
onr) = o (22 ) S
@ The exponent (Koba-Nielsen factor) features the closed-string Green
function G(z, ) on the torus.
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Generating series of Modular Graph Forms

@ On the one hand, these integrals may be computed by performing a Fourier
transform, which leads to sums over discrete momenta and which yields
expressions in terms of MGFs.

@ Alternatively, we note that the (KZB-type) differential equations are of the
form:

270, Yz (olp) = Z { (T 3y ——=7Rii(€0)p —1—2 (A—k)(7—7) G (7 )Rﬁ(ek)pa}yg((ﬂa)7

a€S, 1 k=4
and can be solved in terms of a generating series

A . . Ri(€0) \ vico
= zp:Rﬁ(e[P]) <Z KIATIB- [B'i 7] B4 G T]> exp (W) v

P=ABC

(collecting holo/antiholo. contributions) (initial value)

@ The first sum is over words P = {(11 N ’k‘( of length ¢ > 0 with k; > 4 even and
0 <ji < ki — 2, while the second sum is over deconcatenations of P.

@ The term x[X; 7] is a purely antiholomorphic term which carries
combinations of MZV’s and which can be determined through reality
properties of the MGF’s.
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Generating series of Modular Graph Forms

@ The coefficients ¢[P] are defined by:

P ( 1]/ k 1) (ke—2—j ky—2—j P
=it 4] = (T GEE e e

where the quantities e,({) are defined using the shorthand:

I = ad () = [eos [ -+ [eor el]- - ]

Jj-times

@ The notation R;(e[P]) indicates that we are considering a particular matrix
representation of the generators ¢,. The ¢,-derivations satisfy various
relations furnished by Tsunogai’s derivation algebra: [Tsunogai 1995, ...,

0= k 1) k > 4 even, Pollack 2009]

0= [64,610] — 3[es, €8],
0 = —462 €4, [e4, €s]] — 1725]ee, [€s, €4]] — 280]eg, egl)]
+125[¢,, 6(1%))] + 250[€40, 621)] — 80[€,5, eff)] — 16[64,6(112)]
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Tsunogai derivation algebra

@ The Tsunogai derivation algebra has the following impact on the generating
series.

1. Relations like [es, €10] — 3 [€6, €5] = O project out cusp-form contributions to
non-holomorphic modular forms in /%9¥ | in other words there are no

f_r dTlAk (7’1)
2. Therefore, MGF’s and the 5°4V[::; 7] are not one-to-one. It turns out that a

full’ set of 8°%¥[.; 7] requires (iterated) integrals of cusp forms starting
from k > 14.
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Generating Series of g

@ We now consider a generating series for the 5°9V[ ' ; 7]:

FY({e}iT) = Z €e[P]B°Y[P; 7]
P
@ The central result of our paper is that:

<Y ({adit) =1 ({adim) B ({adi 7) 6™ (- ({a}i 7)) -

which makes explicit a construction in [Brown, 1707.01230, 1708.03354] of
these integrals. The holomorphic / antiholomorphic contributions are
packaged in the following way:
Jr({adim) =D €elPIBIP; 7]
P
@ The tilde of J_ ({e«} ; 7) instructs us to reverse the words:

6,911) . e,((j;) — e,g;) . e,(él)

@ We furthermore have B ({ex} ; 7) = >, €[P]b°V[P; 7], with
—2—jj ji+pi . c\f
SV | .o 'i ki—=2—ji\ (Ji+pi (_27”7—) " sy =t
el = S S (V) () S g ).

pi=0 £;=0
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B ({ex} : 7)

@ The new ingredient B8V (¢) is specified by the ¢ which are composed out
of single-valued MZV’s. For example:

(338 =

@ Conjecturally:

1

ki—2 .
e [ht

(3 v [1 0] — 3
907200 ° 46 226800 ’

*72%07 cv[it] = 21600’ 3] = 21%00’
¢ sv sv ¢
—3f5 ¢ [‘112]_1260’ '[1¢] = -,

%55 Csv[i?,] = ;%7 (18] =%
1 SV
2505353 ECzCs 21600C11’
1 . 2, 1804427
= 3750535 T 375036 124380000C13’
1 1 137359
~ 1762573 T 1270835 ~ CSQ 243784801

M 2} (H 1_ > sv (fi,—1---fk,—1) mod fewer f;
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The change of alphabet ¢*"

@ The map ¢° applies a change of alphabet to the ¢[P]. For example:

sy G (T )
¢%V(€2) = €4+252 ([66 ,€ } 3{66 ,64}+6|: D—i—
@ More generally, the map ¢*¥ can be described through a conjugation with

another generating series: ¢V (¢,) = MSV¢, (Msv)fl, which is given by:

MY (z)) Z Z SV (FnSmy - - - fing ) Zmy Zmy - - - Zm,

£>0 my,....mpe2N+1

@ Here the f; are letters in the so-called f-alphabet of (motivic) multiple zeta
values, and the z; are a new class of operators in the derivation algebra
which normalize the set {¢}. For example:

(23, €4] = % ([6(62)764} -3 {66 ,64 } +6 [ (2)})

@ Putting things together, we find (in shorthand notation);

jqu — j+BSVMSV77 (MbV)71
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Iterated Integrals of Holomorphic Cusp Forms

@ We may generalize the construction by relaxing the constraints from
Tsunogai’s derivation algebra. In this case we also require contributions
from holomorphic cusp forms A(7) = g + O (¢?) in the modular
completion. For example: [Brown, 1407.5167, 1707.01230]

[Dorigoni, Kleinschmidt, Schlotterer, 2109.05018]

B[t d: 7] = (Brand MZVs)
1 A(Ap,12) s s
* 52920000 A (8sy, 10) P+ Lawi T = - [ani7])
B2 27| = (Brand MZVs)
1 A(A,12) . .
"~ 122472000 A (Aq,, 10) (B+ (7] = 8-y 7))

@ The coefficients contain ratios of (critical and non-critical) L-values //\\((ﬁ,fgnct))
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Conclusion and outlook

@ MGFs are an interesting class of non-holomorphic modular forms, which
have (conjecturally s.v.) MZV’s in the coefficients of their g-expansions.

@ We provided the dictionary between MGF’s and Brown’s equivariant iterated
Eisenstein integrals, and provide evidence for Brown’s conjecture that
equivariant iterated Eisenstein integrals contain all modular graph forms.

@ Future work: explore similar generating-function approach to z-dependent
elliptic MGFs / single-valued elliptic polylogarithms and their
iterated-integral representation.

@ Future work: explore connections to the recent one-loop KLT formula?
[Stieberger, 2212.06816]
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