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Motivation and introduction (I)

The recent discovery of gravitational waves calls for new analytical
techniques to study classical gravitational bound states

We focus on the long-distance inspiral regime of binary compact systems,
which can be studied with perturbative scattering amplitudes

See related talks by [Kavanagh,Roiban; Aoude, Alessio, Bautista, Brown,
Cristofoli, Foffa, Isabella, Long, Jakobsen, Kälin, Ochirov, Pichini, Sergola]
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Motivation and introduction (II)

Question 1: How can we understand classical bound states from QFT
amplitudes techniques?

This seems an hard question . . .
’It must be said that the theory of
relativistic effects and radiative cor-
rections in bound states is not yet in
an entirely satisfactory shape.’
(Weinberg, QFT I, page 560)

Question 2: The analytic S-matrix structure encodes the bound state physics
only through an infinite sum . . . How can perform the resummation?

Question 3: How can we compute scattering and bound state observables?
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Revisiting the leading eikonal resummation (I)

Framework: QFT scattering amplitudes techniques for the classical
gravitational interaction of two massive (spinless or spinning) point particles

What do we expect?

Classical bound states re-
quire an infinite number of
graviton exchanges in the
quantum theory

Looks a lot like
the eikonal resummation !

Let’s make this precise . . .
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Revisiting the leading eikonal resummation (II)

Consider the conservative 4-pt amplitude: the classical HEFT expansion
[Damgaard,Aoude,Haddad,Helset;Brandhuber,Chen,Travaglini,Wen] is
equivalent, at leading order, to the eikonal resummation −t ≪ s

pµ1 := pµA + ℏ
q̄µ

2
, (p′1)

µ :=pµA − ℏ
q̄µ

2
, s= (pA + pB)

2 ,

pµ2 := pµB − ℏ
q̄µ

2
, (p′2)

µ :=pµB + ℏ
q̄µ

2
, t=− ℏ2 |⃗q̄|2 ,

where pA, pB are the classical momenta and q is the momentum transfer.

Given that we have

pA · q = pB · q = 0 ,

it is natural to work in impact parameter space (x⊥∼ natural length scale)

M̃cl
4 (pA, pB ; x⊥) :=

∫
d̂4q δ̂(2pA · q)δ̂(2pB · q)e i

q·x⊥
ℏ Mcl

4 (pA, pB ; q) ,
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Revisiting the leading eikonal resummation (III)

The tree-level contribution to the leading resummation (LR) is,

iM(0),cl
4,LR (q) =

i

q2 + iϵ
Vµν(pA)P

µναβ Vαβ(pB) , Vµν(p) := i κ pµ pν .

which can be rewritten in impact parameter space as

iM̃(0),cl
4,LR (x⊥) =

∫
d̂4q e i

q·x⊥
ℏ R̃α1β1(pA, q)

(
i

q2 + iϵ
Vα1β1(pB) δ̂(2pB · q)

)
,

R̃αβ(pA, q) := Pµναβ Vµν(pA) δ̂(2pA · q) .

i.e. we separate artificially the contributions from particle A and B.
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Revisiting the leading eikonal resummation (IV)

The one-loop contribution is the sum of box and crossed box,

iM(1),cl
4,LR (q) =

1

2!

∫
d̂4l1

∫
d̂4l2δ̂

4(l1 + l2 − q)
2∏

i=1

[
Vµiνi (pA)P

µiνiαiβiVαiβi (pB)
i

l2i + iϵ

]
×

[
i

−2l1 · pA + iϵ
+

i

2l1 · pA + iϵ

] [
i

−2l1 · pB + iϵ
+

i

2l1 · pB + iϵ

]
︸ ︷︷ ︸

δ̂(2l1·pA)δ̂(2l1·pB )

.

where the 1/2! is usually considered an ad hoc factor for the averaging.

In impact parameter space we recognize an iterative structure . . .

iM̃(1),cl
4,LR (x⊥) =

∫
d̂4q e i

q·x⊥
ℏ

∫
d̂4l1

∫
d̂4l2δ̂

4(l1 + l2 − q)R̃α1α2β1β2(pA, l1, q)

× 1

2!

(
i

l21 + iϵ
Vα1β1(pB)δ̂(2l1 · pB)

)(
i

l22 + iϵ
Vα2β2(pB)δ̂(2l2 · pB)

)
.

where does it come from?
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New classical structure: coherent state of virtual gravitons

The iterative structure suggests the introduction of a new classical object

which creates the gravitational field hµν responsible for the interaction.

We find that this object is a coherent state of virtual gravitons

|ψσ
LR⟩ =

1

N

∫
dΦ(p)ϕ(p)exp

[∫
d̂4l

l2 + iϵ
δ̂(2pA · l)iM(0),cl

3 (pA, l
σ)A†

σ(l)

]
|p⟩ ,

which can be derived also by the in-in expectation value in (1, 3) signature
(see [Monteiro, O’Connell, Peinador Veiga, Sergola] for a (2, 2) derivation).
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The space of classical amplitudes

Consequence: the leading eikonal resummation can be fully derived by
unitarity with coherent states of virtual gravitons!

1) We can view the leading order interaction as one particle moving in the
background of the other [t’Hooft;Kabat,Ortiz;Adamo,Cristofoli,Tourkine]

2) Having a classical field imposes on you to average over the internal
graviton legs: the 1/n! factor comes from expanding the coherent state, as
well as all the eikonal diagrams.

New physical principle: the space of classical conservative 4-pt amplitudes is

H4,cl := H4/ ∼cl

i.e. the quotient space of 4-pt amplitudes H4 under the equivalence relation

M4 ∼cl M′
4 iff they differ by a permutation of an internal graviton exchange .

Note: also applies to real emission amplitudes! [Cristofoli et al.,Britto et al.]
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Spinning eikonal resummation at leading order

We can also consider the eikonal resummation for spinning particles using the
HEFT [Aoude,Haddad,Helset]

There is an extra double commutator term, which is suppressed for Kerr
black hole! [Haddad] If Kerr can be thought as a point particle at large
distances, we expect these terms to be always suppressed.
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The bound state equation in quantum field theory

The Bethe-Salpeter equation is a non-perturbative recursion relation for 4-pt
amplitudes, which generate the bound state energy poles via the iteration of
a two-massive particle irreducible kernel K

Bethe- Salpeter

equation

M4(p1, p
′
1;P) = K(p1, p

′
1;P) +

∫
d̂4l K(p1, l ;P)G (l ,P)M4(l , p

′
1;P) ,

where G (l ,P) is the two-body propagator.

How can we take the classical limit?
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The classical Bethe-Salpeter equation

We need to quotient by symmetrization over the internal graviton exchanges:
the result is the classical Bethe-Salpeter equation in the space H4,cl

Mcl
4,(n+1)(pA, pB , q)

=

{
Kcl(pA, pB , q) if n = 0
1

n+1

∫
d̂4l Kcl(pA, pB , l)Gcl(pA, pB , l)Mcl

4,(n)(pA, pB , q − l) if n ≥ 1
.

where the two-body propagator is replaced by its on-shell version

Gcl(pA, pB , l) = δ̂(2l · pA)δ̂(2l · pB) ,

and (n) is the number of classical two-massive particle irreducible diagrams.
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Recovering the leading eikonal resummation from BSE

While the original iteration in the BS equation was not crossing symmetric
and required an infinite number of diagrams in the kernel

we can now recover the leading eikonal resummation with a single tree-level
kernel for the new classical BSE
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Exponentiation of the classical kernel: an exact solution

The classical BSE in impact parameter space becomes

M̃cl
4,(n+1)(pA, pB , x⊥) =

{
K̃cl(pA, pB , x⊥) if n = 0
1

n+1 K̃cl(pA, pB , x⊥)M̃cl
4,(n)(pA, pB , x⊥) if n ≥ 1

,

and therefore by iteration we get, schematically,

M̃cl
4,(n+1) = K̃cl +

1

2!
K̃2

cl + · · ·+ 1

(n + 1)!
K̃n+1

cl

which means that the final solution exponentiates exactly

M̃cl
4 (pA, pB , x⊥) = eK̃cl(pA,pB ,x⊥) .

The analytic structure (poles, etc.) in momentum space arise completely from

iMcl
4 (pA, pB ; q⊥) =

4
√

(pA · pB)2 −m2
Am

2
B

ℏ2

∫
d2x⊥e

−iq̄⊥·x⊥
(
eK̃cl(pA,pB ,x⊥) − 1

)
.
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The Hamilton-Jacobi action and observables (I)

The classical two-body kernel contains both scattering and bound dynamics.
For spinless particles, the motion is restricted to a plane and we can define
the conserved quantities (E , J)

E :=
E −mA −mB

ν(mA +mB)
, J = p∞|x⊥| , ν =

mAmB

(mA +mB)2
,

where p∞ is the com momentum at infinity and y = vA · vB is the rapidity.
E > 0 for scattering orbits, while E < 0 for bound orbits.

Natural connection of the kernel with Hamilton-Jacobi action [Kälin,Porto]

K̃>/<
cl (pA, pB ; x⊥) =

i

ℏ
I>/< (E , J) , I>/< (E , J) =

∮
C>/<

dr pr (r , E , J) + Jπ ,

where pr is the radial momentum and C>/< is the contour of integration for
scattering/bound orbits. Natural analytic continuation

I< (E < 0, J) = I> (E < 0, J)− I> (E < 0,−J) .
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The Hamilton-Jacobi action and observables (II)

The classical kernel up to 2PM is

K̃>
cl (pA, pB , x⊥) =

i

ℏ

[
− 2GN log(µIR|x⊥|)mAmB

2y2 − 1√
y2 − 1

+
3π

4
G 2
NmAmB(mA +mB)

5y2 − 1√
y2 − 1

1

|x⊥|

]
,

Scattering and bound observables are derived by differentiation

χ(E , J) = −∂I
> (E , J)
∂J

, ∆Φ(E , J) = −∂I
< (E , J)
∂J

.

Interested in binding energy: in the PN expansion (E ≪ mAc
2,mBc

2) we get

I< (E , J) = 0 → ϵ = x − 1

12
x2(9 + ν) +O(x3)

ϵ = −2E , x =

(
1

GNmAmB

dJ(E)
dE

)− 2
3

.
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The Hamilton-Jacobi action and observables (II)

The classical kernel up to 2PM is

K̃>
cl (pA, pB , x⊥) =

i

ℏ

[
− 2GN log(µIR|x⊥|)mAmB

2y2 − 1√
y2 − 1

+
3π

4
G 2
NmAmB(mA +mB)

5y2 − 1√
y2 − 1

1

|x⊥|

]
,

Scattering and bound observables are derived by differentiation

χ(E , J) = −∂I
> (E , J)
∂J
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Analytic structure of resummed classical amplitudes (I)

How is the classical dynamics encoded in the amplitude solution of the BSE
in momentum space?

The leading classical resummation of the tree-level kernel gives [Kabat, Ortiz]

iMcl,>/<
4,LR (pA, pB ; q⊥) =

4πmAmB

√
y2 − 1

ℏ2µ2
IR

Γ(1− A
>/<
0 )

Γ(A
>/<
0 )

(
4ℏ2µ2

IR

q2

)1−A
>/<
0

,

where for E > 0 we have (“phase”)

A>
0 := i

GN

ℏ
mAmB

2y2 − 1√
y2 − 1

,

but for E < 0 (real function!!!)

A<
0 :=

GN

ℏ
mAmB

2y2 − 1√
1− y2

.
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Analytic structure of resummed classical amplitudes (II)

The bound state wavefunction can be computed from the conservative
amplitude by matching the cross-section [Fried,Kang,McKellar]

ψ<
bound :=

1

8πE

(
p2∞
µ2
IR

)−A<
0

M<
4 (pA, pB ; q⊥) .

which is manifestly infrared-finite at all orders.

For the leading resummation we obtain

ψ<
bound,LR =

2mAmB

√
1− y2

E q2
Γ(1− A<

0 )

Γ(A<
0 )

(
4p2∞
q̄2

)−A<
0

,
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Analytic structure of resummed classical amplitudes (III)

We can visualize the amplitude properties by looking at the cross-section

We notice that there is a set of poles and zeros labelled by integers

poles: 1− A0 = 1− n , n ∈ Z>0 , zeros: 1− A0 = 1 + n , n ∈ Z>0 ,
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Amplitude poles and the binding energy

The binding energy ϵ
(1)
n is given by

ϵ(1)n =
1

2

[
mA +mB −

√
m2

A +m2
B +

1√
2
mAmB

√
4− ξ2n + ξn

√
8 + ξ2n

]
,

where ξn := ℏn/(GNmAmB). How do we recover the earlier result?

We expect from the correspondence principle that

ℏ → 0 , n → +∞ , ℏn ℏ→0→ J ,

which means that we can recast the pole structure as ξn → J/(GNmAmB). In
particular we recover the leading PN binding binding energy

ϵ(1) =
G 2
Nm

2
Am

2
B

ℏ2n2
=

G 2
Nm

2
Am

2
B

J2
.
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The (relativistic) Sommerfeld effect

Should there be any effect of the classical resummation on the cross-section,
considering in general compact objects in a bound gravitational system?

At the Newtonian order (attractive potential) we recover the Sommerfeld
enhancement, while in general relativistic physics this is not an enhancement

Interesting phenomenological applications! [Slatyer;Petraki]
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Next-to-leading order resummed classical amplitude (I)

We also resum the conservative 2 PM result analytically

ψ<
bound,NLR =

mAmB

√
1− y2

Eℏ2

×

[
2
Γ (1− A<

0 )

Γ
(
1
2 + A<

0

) (1

q̄

)2 (
4p2∞
q̄2

)−A<
0

0F3

(
;
1

2
,A<

0 ,A
<
0 ;−

(A<
1 )

2q̄2

16

)

+
A1Γ

(
1
2 − A<

0

)
Γ
(
1
2 + A<

0

) 1

q̄

(
4p2∞
q̄2

)−A<
0

0F3

(
;
3

2
,
1

2
+ A<

0 ,
1

2
+ A<

0 ;−
(A<

1 )
2q̄2

16

)
+
(
−A<

1

)2−2A<
0 p

−2A<
0∞ Γ

(
−2 + 2A<

0

)
0F3

(
; 1,

3

2
− A<

0 , 2− A<
0 ;−

(A<
1 )

2q̄2

16

)]
,

focussing on E < 0 with A<
0 defined as before and

A<
1 :=

3π

4ℏ
G 2
NmAmB(mA +mB)

5y2 − 1√
1− y2

.
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Next-to-leading order resummed classical amplitude (II)

While the function is complicated, we can find numerically poles and zeros!
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Summary and future directions

We derived the classical Bethe-Salpeter equation which describes
gravitational bound systems, both for particles with and without spin, using a
new physical principles for classical amplitudes

We solved the BS equation in impact parameter space, making a connection
with the Hamilton-Jacobi action and to scattering and bound observables

We discussed the resummation of classical momentum amplitudes, providing
a connection with the bound state wavefunction (poles → binding energy,
residue → decay rate).

We discuss an interesting physical effect, which is the relativistic analog of
the Sommerfeld effect, which might have phenomenological implications

Future directions: include radiative effects, understand better the analytic
structure of spinning amplitudes, understand better the analytic continuation
for generic spins and radiative effects, . . .
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