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Double Copy – a review



Textbook perturbative gravity is complicated!

After symmetrization
100 terms !

=
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de Donder
gauge

higher order
vertices…

103 terms

complicated diagrams:

104 terms 107 terms 1021 terms

DeWitt (‘67)



On-shell simplifications
Graviton plane wave:

=

Gravity scattering amplitude:

Yang-Mills polarization

Yang-Mills vertex

Yang-Mills amplitude

On-shell 3-graviton vertex:

Gravity processes = “squares” of gauge theory ones:  KLT, BCJ, CHY



Kawai-Lewellen-Tye Relations (‘86)

gravity states are 
products of YM states:

etc…

Field theory limit Þ gravity theory ~ (YM theory) ´ (YM theory)

String theory
tree-level identity: closed string ~ (left open string) ´ (right open string)

KLT relations emerge after nontrivial world-sheet integral identities

4

|2i = |1i ⌦ |1i
|3/2i = |1i ⌦ |1/2i



Squaring of YM theory – the double copy
Gravity processes = squares of gauge theory ones - entire S-matrix     

GravityYang-Mills

pure Yang-Mills ® Einstein gravity + dilaton + axion

4D YM + massless quarks  ® Pure 4D Einstein gravity 

®

®

E.g.

squared
numerators 

(BCJ double copy)



Example: axion-dilaton gravity 
Consider double copy of D-dimensional pure YM:

2 THE DUALITY BETWEEN COLOR AND KINEMATICS

indices i, and those of the double-copy fields can be made explicit,

(Áh)ij

µ‹
= Á((i

µ
Áj))

‹
(graviton) ,

(ÁB)ij

µ‹
= Á[i

µ
Áj]

‹
(B-field) , (2.46)

(Á„)µ‹ =
Ái

µ
Áj

‹
”ij

D ≠ 2 (dilaton) .

On the first line the gluon polarizations are multiplied in symmetric-traceless combinations
corresponding to the 1

2(D ≠ 2)(D ≠ 1) ≠ 1 states of a graviton. On the second line they are
antisymmetrized corresponding to the 1

2(D ≠ 2)(D ≠ 3) states of an antisymmetric tensor
field. The completeness of the set of gluon polarization vectors implies that the right-hand
side of the third line of Eq. (2.46) is proportional to ÷µ‹ up to momentum-dependent terms,
so (Á„)µ‹ describes a single state. Adding them all up we find the (D ≠ 2)2 states in the
tensor product of two massless vectors, as we should.

The double copy of D-dimensional pure YM theory gives gravity amplitudes Mtree that
follow from the Lagrangian [183, 184]

S =
⁄

dDx
Ô

≠g

C

≠1
2R + 1

2(D ≠ 2)ˆµ„ˆµ„ + 1
6e≠4„/(D≠2)H⁄µ‹H⁄µ‹

D

, (2.47)

where H⁄µ‹ is the field strength of the two-index antisymmetric tensor Bµ‹ and the non-
canonical normalization of the dilaton quadratic term is chosen to avoid non-rational depen-
dence on the spacetime dimension D. The Z2 symmetry Bµ‹ æ ≠Bµ‹ generates a consistent
truncation of this Lagrangian to Einstein gravity coupled to „. The further Z2 symme-
try of this truncation, „ æ ≠„, allows a further consistent truncation to Einstein gravity.
The double copy analog of this truncation is realized by choosing gluon polarizations in
symmetric-traceless combinations, as for the graviton polarizations in Eq. (2.46).

To show the connection to the BCJ double copy, consider, for example, the five-point
tree amplitude. The double-copy amplitude in terms of Jacobi-satisfying numerators is,

Mtree
5 (1, 2, 3, 4, 5) = ≠i

15ÿ

i=1

niñi

Di

= ≠i ñ1

3
n1

D1
+ n1

D7
+ n1

D8
+ n1 + n4

D13
+ n1 + n4

D14

4

≠ i ñ4

3
n4

D4
+ n4

D10
+ n4

D11
+ n1 + n4

D13
+ n1 + n4

D14

4
, (2.48)

where we used the solution (2.40) and the propagators 1/Di can be read o� from the diagrams
in Fig. 7. As usual, where we suppress an overall factor of (Ÿ/2)3. Remarkably, after using
the solution (2.40) for both the ni and ñi, the result depends only on the numerators n1, n4
and ñ1, ñ4. Using Eq. (2.41), we have,

Mtree
5 (1, 2, 3, 4, 5) = ≠

1
ñ1 Atree

5 (1, 2, 3, 4, 5) + ñ4 Atree
5 (1, 4, 3, 2, 5)

2

= i s12s45A
tree
5 (1, 2, 3, 4, 5) ÂAtree

5 (1, 3, 5, 4, 2)
+ i s14s25A

tree
5 (1, 4, 3, 2, 5) ÂAtree

5 (1, 3, 5, 2, 4) . (2.49)
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the solution (2.40) for both the ni and ñi, the result depends only on the numerators n1, n4
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Amplitudes consistent with the theory:

In 4D this is axion-dilaton gravity:

Symmetry                     allows for consistent truncation of scalars



The (Square-)Root of Gravity



Color-kinematics duality

Some Reviews that can help with writing:
Marco’s review: 1607.04129
Cheung’s review: 1708.03872
Zvi+Yu-tin: arXiv:1103.1869
JJ+Henrik: arXiv:1103.3298
JJ Tasi lectures: 1506.00974

1. Introduction

1.1. Motivation: Complexity of gravity vs. YM

Discuss gravity: How do we characterize gravity? How do we compute? Why are
Feynman rules so complicated? How many terms are there? Can we do better?

Give 3pt vertex: the bad (100 terms) and the good (62) terms.

1.2. Invitation: 4pt example

Consider the four-gluon tree amplitude in Yang-Mills theory, we can write it as a sum
over three channels

AYM
4 =

nscs
s

+
ntct
t

+
nucu
u

, (1.1)

where the Mandelstam variables are defined as s = (p1 + p2)2, t = (p2 + p3)2, u = (p1 + p3)2,
and they obey s+ t+ u = 0. The s-channel color factor is

cs = fa1a2bf ba3a4 , (1.2)

and the s-channel kinematic numerator is

ns =
[

(ε1 · ε2)pµ1 + 2(ε1 · p2)εµ2 − (1 ↔ 2)
][

(ε3 · ε4)p3µ + 2(ε3 · p4)ε4µ − (3 ↔ 4)
]

+s
[

(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)
]

, (1.3)

where the momenta and polarization vectors satisfy on-shell conditions p2i = εi · pi = 0. The
other color factors and numerators are given by cyclic permutations of the particle labels
(1,2,3): ctnt = csns

∣

∣

1→2→3→1
and cunu = csns

∣

∣

1→3→2→1
. Note that the kinematic numerators

are here built out of the cubic Feynman rule on the first line of eq. (1.3) plus a contact term
on the second line that corresponds to the quartic gluon vertex. Thus the quartic vertex is
democratically absorbed into the three channels.

We can check that this expression is a physical amplitude by confirming that it is gauge
invariant. That is, replace the polarization vector ε4 → p4 and the amplitude should vanish.
Upon doing this replacement for the s-channel numerator we get after some algebra the
non-zero result

ns

∣

∣

∣

ε4→p4
= s
[

(ε1 · ε2)
(

(ε3 · p2)− (ε3 · p1)
)

+ cyclic(1, 2, 3)
]

≡ sα(ε, p) , (1.4)

4
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consider linearized gauge transformation
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2 3
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(individual diagrams not gauge inv.)
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non-zero result
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which is no surprise since individual diagrams should be gauge dependent. For the full
amplitude we get
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ε4→p4
= (cs + ct + cu)α(ε, p) , (1.5)

where α(ε, p) is the expression in eq. (1.4). Hence the amplitude is gauge invariant if the
following combination of color factors vanish

cs + ct + cu = fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4 = 0 . (1.6)

This is the standard Jacobi identity, which indeed must be satisfied by the structure con-
stants in a gauge theory since they come from a Lie algebra.

So far there are no surprizes; however, consider the kinematic three-term expression that
is analogous to the Jacobi identity, it also vanishes

ns + nt + nu = 0 . (1.7)

It is important that the on-shell conditions are used to show this. The significance of this
identity cannot be overstated. We will refer to the existence of such kinematic identities
that are analogous to color identities as: color-kinematics duality. It turns out that they
constitute an ubiquitous, yet well-hidden, structure of gauge theories.

The fact that the kinematic factors satisfy the same relations as the color factors suggest
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors
in the YM four-point amplitude, which gives a new amplitude of the form
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u
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The new amplitude doubles up the kinematic numerators, and so we refer to it as a double
copy. The amplitude has the following properties: the external states are captured by
symmetric polarization tensors εµν = εµεν , the interactions are of the two-derivative type,
and the amplitude is invariant under linearized diffeomorphism transformations. Assuming
that the polarization vectors are null ε2 = 0 (circular polarization), implying that εµν is
traceless, this amplitude must describe the scattering of four gravitons in General Relativity.

The diffeomorphism invariance of the amplitude requires some elaboration. Consider a
linearized diffeomorphism of the asymptotic (weak) graviton field hµν . The diffeomorphism
is parametrized by the function ξµ and take the simple form

δhµν = ∂µξν + ∂νξµ . (1.9)

Translating this to momentum space implies that a diffeomorphism invariant amplitude
should vanish upon replacing a polarization tensor as: εµν → pµεν + pνεµ. Applying this to
leg 4 of the amplitude, we get
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1. Introduction

1.1. Motivation: Complexity of gravity vs. YM

Discuss gravity: How do we characterize gravity? How do we compute? Why are
Feynman rules so complicated? How many terms are there? Can we do better?

Give 3pt vertex: the bad (100 terms) and the good (62) terms.

1.2. Invitation: 4pt example

Consider the four-gluon tree amplitude in Yang-Mills theory, we can write it as a sum
over three channels

AYM
4 =

nscs
s

+
ntct
t

+
nucu
u

, (1.1)

where the Mandelstam variables are defined as s = (p1 + p2)2, t = (p2 + p3)2, u = (p1 + p3)2,
and they obey s+ t+ u = 0. The s-channel color factor is

cs = fa1a2bf ba3a4 , (1.2)

and the s-channel kinematic numerator is

ns =
[

(ε1 · ε2)pµ1 + 2(ε1 · p2)εµ2 − (1 ↔ 2)
][

(ε3 · ε4)p3µ + 2(ε3 · p4)ε4µ − (3 ↔ 4)
]

+s
[

(ε1 · ε3)(ε2 · ε4)− (ε1 · ε4)(ε2 · ε3)
]

, (1.3)

where the momenta and polarization vectors satisfy on-shell conditions p2i = εi · pi = 0. The
other color factors and numerators are given by cyclic permutations of the particle labels
(1,2,3): ctnt = csns

∣

∣

1→2→3→1
and cunu = csns

∣

∣

1→3→2→1
. Note that the kinematic numerators

are here built out of the cubic Feynman rule on the first line of eq. (1.3) plus a contact term
on the second line that corresponds to the quartic gluon vertex. Thus the quartic vertex is
democratically absorbed into the three channels.

We can check that this expression is a physical amplitude by confirming that it is gauge
invariant. That is, replace the polarization vector ε4 → p4 and the amplitude should vanish.
Upon doing this replacement for the s-channel numerator we get after some algebra the
non-zero result
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∣

∣

ε4→p4
= s
[

(ε1 · ε2)
(

(ε3 · p2)− (ε3 · p1)
)

+ cyclic(1, 2, 3)
]

≡ sα(ε, p) , (1.4)
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Double copy

Properties of ampl:

…replace color by kinematics                         BCJ double copy
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Color and kinematics are dual…

spin-2 scattering

which is no surprise since individual diagrams should be gauge dependent. For the full
amplitude we get

nscs
s

+
ntct
t

+
nucu
u

∣

∣

∣

ε4→p4
= (cs + ct + cu)α(ε, p) , (1.5)

where α(ε, p) is the expression in eq. (1.4). Hence the amplitude is gauge invariant if the
following combination of color factors vanish

cs + ct + cu = fa1a2bf ba3a4 + fa2a3bf ba1a4 + fa3a1bf ba2a4 = 0 . (1.6)

This is the standard Jacobi identity, which indeed must be satisfied by the structure con-
stants in a gauge theory since they come from a Lie algebra.

So far there are no surprizes; however, consider the kinematic three-term expression that
is analogous to the Jacobi identity, it also vanishes

ns + nt + nu = 0 . (1.7)

It is important that the on-shell conditions are used to show this. The significance of this
identity cannot be overstated. We will refer to the existence of such kinematic identities
that are analogous to color identities as: color-kinematics duality. It turns out that they
constitute an ubiquitous, yet well-hidden, structure of gauge theories.

The fact that the kinematic factors satisfy the same relations as the color factors suggest
that they are mutually exchangeable. Indeed, we can swap color factors for kinematic factors
in the YM four-point amplitude, which gives a new amplitude of the form

AYM
4

∣

∣

∣

ci→ni

≡ MGR
4 =

n2
s

s
+

n2
t

t
+

n2
u

u
. (1.8)

The new amplitude doubles up the kinematic numerators, and so we refer to it as a double
copy. The amplitude has the following properties: the external states are captured by
symmetric polarization tensors εµν = εµεν , the interactions are of the two-derivative type,
and the amplitude is invariant under linearized diffeomorphism transformations. Assuming
that the polarization vectors are null ε2 = 0 (circular polarization), implying that εµν is
traceless, this amplitude must describe the scattering of four gravitons in General Relativity.

The diffeomorphism invariance of the amplitude requires some elaboration. Consider a
linearized diffeomorphism of the asymptotic (weak) graviton field hµν . The diffeomorphism
is parametrized by the function ξµ and take the simple form

δhµν = ∂µξν + ∂νξµ . (1.9)

Translating this to momentum space implies that a diffeomorphism invariant amplitude
should vanish upon replacing a polarization tensor as: εµν → pµεν + pνεµ. Applying this to
leg 4 of the amplitude, we get

n2
s
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n2
t

t
+

n2
u

u

∣

∣

∣

εµν4 →pµ4 ε
ν
4+pν4ε

µ
4

= 2(ns + nt + nu)α(ε, p) = 0 , (1.10)
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Cheung-Shen Lagrangian

It obeys the Jacobi relation after summing over the s, t, u-channels

0 = Ns +Nt +Nu = [[Lp1 , Lp2], Lp3 ] + cyclic(1, 2, 3)

= −
(

X(p1, p2)X(p1 + p2, p3) + cyclic(1, 2, 3)
)

Lp1+p2+p3 (2.12)

So far, the numerators still contains a generator corresponding to the fourth external
leg; to remove it, we can introduce a formal trace

ns = Tr(Ns Lp4) = X(p1, p2)X(p1 + p2, p3)δ
4(p1 + p2 + p3 + p4) , (2.13)

where the trace is normalized to Tr(Lp Lp′) = δ4(p+ p′). Note that we include a delta
function to make the dependence on p4 manifest, but for the remaining part of this
paper we drop such delta functions and consider the numerators only a function of the

first (n− 1) momenta of an n-point amplitude.

The corresponding color factors can, of course, be generated by the same procedure
from the gauge group Lie algebra, with generators T a and defining commutation relation

[T a, T b] = ifabcT c. For example the four-point s-channel color factor is given by

Cs = [[T a1 , T a2 ], T a3 ] = −fa1a2bf ba3cT c (2.14)

We obtain the proper color factor after removing the last generator by tracing it

against the external generator, cs = Tr(Cs T a4) = fa1a2bf ba3a4 , using the normaliza-
tion Tr(T aT b) = δab.

Finally, we note that Monteiro and O’Connell generalized their construction by

considering a kinematic algebra induced by the CHY framework [72]. While this in
principle gives a construction for non-local BCJ numerators in terms of the solutions
to the scattering equations, from the perspective of the current paper we are mainly

interested in local numerators where the algebraic properties are manifest. This brings
us to the Cheung-Shen construction.

2.3 The Cheung-Shen construction

In ref [16] Cheung and Shen introduced a cubic action that given appropriate external

wave functions computed pion scattering amplitudes, equivalent to those of a SU(N)
non-linear-sigma model. Moreover, the Feynman diagrams obtained computed from

their action manifest the duality between color and kinematics. We can write the
Lagrangian in the following form

LCS = Zaµ!Xa
µ +

1

2
Y a!Y a − gfabcZaµ

(

ZbνXc
µν + Y b∂µY

c
)

, (2.15)

– 7 –

where Zaµ and Xµa are complex vector fields transforming in the adjoint, and Y a is an
adjoint scalar. The tensor field is defined as Xa

µν = ∂µXa
ν −∂νXa

µ , and pions correspond

to having either Y a or ∂µZaµ as external fields.
In this paper, we are not concerned with pion amplitudes, instead we are inter-

ested in tree-level Yang-Mills amplitudes. To that end we note that the Cheung-Shen
Lagrangian can be used to compute certain terms in a Yang-Mills amplitude. In par-
ticular, we note that it correctly reproduces MHV amplitudes with two adjoint scalars

and (n− 2) gluons

A(Y1, g
+
2 , . . . , g

+
x−1, g

−
x , g

+
x+1, . . . , g

+
n−1, Yn) (2.16)

where Yi are scalars and g±i ∼ Z±
i denote gluons, and the polarization vectors of the

gluons needs to be “gauge fixed” as

ε+µ
i (pi, px) =

〈i|σµ|x]√
2 [i x]

, ε−µ
x (px, q) =

〈q|σµ|x]√
2 〈q x〉

, (2.17)

where for the MHV configuration only gluon x has negative helicity, and the reference

null momenta q is arbitrary. With this choice any product (εi·εj) will vanish, and one
can check that the Lagrangian (2.15) gives all the correct terms of type (εi·pj) in a
Yang-Mills amplitude.

Furthermore, we can formally think of the two scalars as having their origin as
extra-dimensional gluons. With this interpretation we can stretch the validity of the

Cheung-Shen Lagrangian to compute all terms in a pure-YM numerator that has the
schematic form

n(σ) ∼ (ε1·εn)nCS(σ) ∼ (ε1·εn)
∏

i,j

(εi·pj) (2.18)

While these terms are sufficient to correctly describe the MHV amplitude with two
scalars, they are not sufficient for the pure-gluon MHV amplitude. This is because

we are lacking terms of the type (εi·εj)
∏

(εk·pl), where (i, j) &= (1, n) are not fixed.
However, such terms are in principle related to the known ones by appropriate relabeling

of the external particles, i.e. by using crossing symmetry.
We can restore the missing crossing symmetry of the numerator using the dimensional-

oxidation prescription of ref. [77], giving

n(σ) =
∑

1!i<j!n

(εi·εj)nCS(σ)
∣

∣

∣

legs i,j→Yi,Yj scalars
(2.19)

where the notation implies that we compute the Cheung-Shen numerator for a fixed
multiperipheral ordering σ, but we consider all possible locations of the two scalar
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∣

∣

∣

legs i,j→Yi,Yj scalars
(2.19)

where the notation implies that we compute the Cheung-Shen numerator for a fixed
multiperipheral ordering σ, but we consider all possible locations of the two scalar
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polarization.

whereasbeforeσ1=1andσn=n.Wewillinterpretthisproductbyevaluatingit

fromlefttoright.Byconstructionthesetofnumeratorsarerelatedbypermutations
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a
′
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w′

f
a

′

1...a
′

k
a1...am;εi(p,pi;w,w

′)J(w′)
a

′

1⊗···⊗a
′

k
(p+pi),(3.9)

wherethef’sarecoefficientsthataresimilartokinematicstructureconstants;although

thefusionproductisnotnecessarilyantisymmetric.Assumingthatthefcoefficients
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are turned into cubic interactions with the help of some auxiliary field1 the duality is
not inherited from the Feynman rules beyond four points. Since individual Feynman di-

agrams are not gauge invariant this observation is not in contradiction with the duality.
Indeed, the cubic-graph decomposition (2.1) is not unique because of the Jacobi-identity
constraints satisfied by the color factors. This implies that the numerators possess a

shift freedom that we refer to as generalized gauge freedom,

ni → ni +∆i , where

(2n−5)!!
∑

i=1

∆ici
Di

= 0 . (2.4)

This includes the usual gauge transformations that leaves the amplitude invariant

εµ(p) → εµ(p) + pµ, and generalizes it by allowing for any functions ∆i that leaves
the amplitude invariant. The color-kinematics duality imply that starting from some

generic cubic-graph representation of the amplitude, one can find some generalized
gauge transformation that gives kinematic numerators that obey the duality.

At tree level it is convenient work with a basis of BCJ numerators. By going to

the color-kinematics-dual version of a Del-Duca-Dixon-Maltoni (DDM) [78, 79] multi-
peripheral basis, all numerators can be expressed using (n − 2)! permutations of the

following graph,

n(σ) ≡ n
(

σ1, σ2, σ3, . . . , σn−1, σn

)

≡ n

(

σnσ1

σn−1· · ·σ3σ2

)

, (2.5)

and typically we fix σ1 = 1 and σn = n, which gives the basis with (n − 2)! elements.

And the color-ordered tree amplitude is then a sum over these (n− 2)! numerators,

Atree
n (ρ1, ρ2, . . . , ρn) =

∑

σ∈Sn−2

m(ρ|σ)n(σ) (2.6)

where m(ρ|σ) is called the propagator matrix [80]. It is the same matrix as describes
doubly color-ordered amplitudes in the bi-adjoint φ3 theory [81–85]. This matrix is

related (by a pseudoinverse) to the Kawai-Lewellen-Tye (KLT) matrix [20, 48, 49].

2.2 The Monteiro-O’Connell construction

The kinematic algebra underlying the color-kinematics duality was first systematically

studied by Monteiro and O’Connell in ref. [71]. They concluded that the self-dual Yang-
Mills sector (which only gives non-zero amplitudes for the all-plus-helicity sector at one

loop [86]) automatically obeys a kinematic algebra. Interactions in this sector can be

1Cubic interactions are obtained by the replacement Tr([Aµ, Aν ]2) → − 1
2 (B

µν)2+Tr([Aµ, Aν ]Bµν).
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Figure 1: Fusion product in the canonical ordering. The algebra simplifies by de-
manding that ε̂1 correspond to a scalar, since the internal currents must carry this

polarization.

where as before σ1 = 1 and σn = n. We will interpret this product by evaluating it

from left to right. By construction the set of numerators are related by permutations
in the legs 2 to n−1. We will refer to such numerators as “crossing symmetric”, even

if leg 1 and n are always fixed and thus special.

Eq. (3.8) indicates that a fusion product is relevant to our construction only when
its second input is a vector current Jεi. For a generic tensor current fused with a vector

current, the fusion product is written as

J (w)
a1⊗···⊗am

(p) # Jεi(pi) =
m+2
∑

k=1

∑

a
′

1
,...,a′k

∑

w′

f
a
′

1...a
′

k
a1...am;εi(p, pi;w,w

′)J (w′)
a
′

1⊗···⊗a
′

k
(p+ pi) , (3.9)

where the f ’s are coefficients that are similar to kinematic structure constants; although

the fusion product is not necessarily antisymmetric. Assuming that the f coefficients
are local polynomials in momenta and polarizations vectors gives the bound k ! m+2.

We note that we may think of the currents J as being generators of the kinematic
algebra, but we will not elaborate on that interpretation in this paper.

In eq. (3.8), N(σ) is expressed in terms of vector and tensor currents. The tensor

currents of the form J···⊗p(p) vanish when replaced by v̄ · · · /pu because of the on-shell
condition /pu = 0. Using eq. (3.7), we can bring the other tensor currents into an irre-
ducible tensor current basis b, defined as the maximal set of tensor currents that cannot

be linearly combined into vector currents or zero. This process generates additional
vector currents. A natural choice of b involves the tensor currents whose labels are in
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whereasbeforeσ1=1andσn=n.Wewillinterpretthisproductbyevaluatingit

fromlefttoright.Byconstructionthesetofnumeratorsarerelatedbypermutations
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ifleg1andnarealwaysfixedandthusspecial.

Eq.(3.8)indicatesthatafusionproductisrelevanttoourconstructiononlywhen
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k
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wherethef’sarecoefficientsthataresimilartokinematicstructureconstants;although

thefusionproductisnotnecessarilyantisymmetric.Assumingthatthefcoefficients
arelocalpolynomialsinmomentaandpolarizationsvectorsgivestheboundk!m+2.

WenotethatwemaythinkofthecurrentsJasbeinggeneratorsofthekinematic
algebra,butwewillnotelaborateonthatinterpretationinthispaper.

Ineq.(3.8),N(σ)isexpressedintermsofvectorandtensorcurrents.Thetensor

currentsoftheformJ···⊗p(p)vanishwhenreplacedbyv̄···/pubecauseoftheon-shell
condition/pu=0.Usingeq.(3.7),wecanbringtheothertensorcurrentsintoanirre-
ducibletensorcurrentbasisb,definedasthemaximalsetoftensorcurrentsthatcannot

belinearlycombinedintovectorcurrentsorzero.Thisprocessgeneratesadditional
vectorcurrents.Anaturalchoiceofbinvolvesthetensorcurrentswhoselabelsarein
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Figure 1: Fusion product in the canonical ordering. The algebra simplifies by de-
manding that ε̂1 correspond to a scalar, since the internal currents must carry this

polarization.

where as before σ1 = 1 and σn = n. We will interpret this product by evaluating it

from left to right. By construction the set of numerators are related by permutations
in the legs 2 to n−1. We will refer to such numerators as “crossing symmetric”, even

if leg 1 and n are always fixed and thus special.

Eq. (3.8) indicates that a fusion product is relevant to our construction only when
its second input is a vector current Jεi. For a generic tensor current fused with a vector

current, the fusion product is written as

J (w)
a1⊗···⊗am

(p) # Jεi(pi) =
m+2
∑

k=1

∑

a
′

1
,...,a′k

∑

w′

f
a
′

1...a
′

k
a1...am;εi(p, pi;w,w

′)J (w′)
a
′

1⊗···⊗a
′

k
(p+ pi) , (3.9)

where the f ’s are coefficients that are similar to kinematic structure constants; although

the fusion product is not necessarily antisymmetric. Assuming that the f coefficients
are local polynomials in momenta and polarizations vectors gives the bound k ! m+2.

We note that we may think of the currents J as being generators of the kinematic
algebra, but we will not elaborate on that interpretation in this paper.

In eq. (3.8), N(σ) is expressed in terms of vector and tensor currents. The tensor

currents of the form J···⊗p(p) vanish when replaced by v̄ · · · /pu because of the on-shell
condition /pu = 0. Using eq. (3.7), we can bring the other tensor currents into an irre-
ducible tensor current basis b, defined as the maximal set of tensor currents that cannot

be linearly combined into vector currents or zero. This process generates additional
vector currents. A natural choice of b involves the tensor currents whose labels are in
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Hopf algebra structure and heavy mass EFT

2

tudes with two heavy particles and an arbitrary number
of gluons/gravitons. Interestingly, the obtained fusion
product has the same structure as the quasi-shuffle prod-
uct, known from the mathematical literature, specifically
in the context of combinatorial Hopf algebras of shuffles
and quasi-shuffles [27–29]. The quasi-shuffle Hopf alge-
bra generates all ordered partitions for a given set [27]
(often called SC – the linear species of set compositions,
or ordered partitions). Mapping the generators to gauge-
invariant expressions, we obtain a closed formula for all
tree-level BCJ numerators relevant to the HEFT. The
numerators are gauge invariant, manifestly crossing sym-
metric and factorise into lower-point numerators on the
massive poles. The underlying quasi-shuffle Hopf alge-
bra implies that the counting of the number of terms in
a numerator with n−2 gluons gives the Fubini number
Fn−3, which counts the number of ordered partitions of
n−3 elements.

Finally, all the considerations in HEFT directly trans-
late to pure YM theory. The pure-gluon BCJ numera-
tors, and the corresponding expressions for the genera-
tors, are obtained from the natural on-shell factorisation
limit [10], which removes the two heavy particles and re-
places them with an additional gluon (with label n−1).
This is straightforward: replace the heavy-particle veloc-
ity v with the last polarisation vector, v → εn−1, and
impose the last on-shell condition p21...n−2 → 0. This op-
eration does not modify the generator fusion rules, and
hence YM theory admits the same kinematic algebra.
The heavy-mass poles become spurious in this limit, and
cancel out once the amplitude is assembled.

THE HEFT KINEMATIC ALGEBRA

A novel colour-kinematic duality and double copy for
HEFT was obtained in [10], by four of the present au-
thors. Ignoring couplings, the YM and gravity tree
amplitudes with two heavy particles and n−2 glu-
ons/gravitons are

A(12 . . . n−2, v) =
∑

Γ∈ρ

N (Γ, v)

dΓ
,

M(12 . . . n−2, v) =
∑

Γ∈ρ̃

[

N (Γ, v)
]2

dΓ
,

(1)

where ρ (ρ̃) denotes all (un)ordered nested commutators
of the particle labels {1, . . . , n−2}, where the leftmost
label is fixed to 1. The ordering is important since here
we work with colour-ordered YM amplitudes. Consid-
ering the set {1, 2, 3}, we have ρ = {[[1, 2], 3], [1, [2, 3]]}
and ρ̃ = {[[1, 2], 3], [[1, 3], 2], [1, [2, 3]]}. In general, labels
1, . . . , n−2 are reserved for the gluons/gravitons and the
heavy particles are assigned n−1 and n, and v is the
velocity that characterises the heavy particles.

The nested commutators are in one-to-one correspon-
dence with cubic graphs (and hence BCJ numerators),
and the corresponding massless scalar-like propagator de-
nominators are denoted as dΓ. For instance, the nested
commutator [[1, 2], 3] corresponds to the following cubic
graph, associated BCJ numerator, and propagator de-
nominator:

1 2 3

↔ N ([[1, 2], 3], v) , d[[1,2],3] = p212p
2
123 , (2)

where pi1...ir := pi1 + · · ·+pir and the red square denotes
the heavy-particle source.

The BCJ numerator N (Γ, v) is a function of a nested
set of labels Γ, and it has an expansion which parallels
that of the commutator, e.g.

N ([1, [2, 3]], v) = N (123, v)−N (132, v)

−N (231, v) +N (321, v) , (3)

and we refer to the object N (1 . . . n−2, v) as the pre-
numerator. In analogy with a Lie algebra, this quantity
should be obtained by multiplying generators through an
associative fusion product. Thanks to the nested commu-
tator structure, the BCJ numerators will automatically
satisfy kinematic Jacobi identities.

Explicit pre-numerators can be obtained from the con-
straint imposed by requiring that they lead to correct
amplitudes, and in [10] this was done up to six points.
In the following, it will be crucial to find representations
of the pre-numerators where any non-locality will corre-
spond to a massive physical pole ∼ 1

v·P , where P is a
sum of gluon momenta [30]. This linearised propagator
arises because of the large-mass expansion. Our results
will be an improvement compared to [10], since in that
work additional spurious poles were present in the pre-
numerators. We find the following explicit new results
up to five points:

N (1, v) = v·ε1 ,

N (12, v) = −
v·F1·F2·v

2v·p1
,

N (123, v) =
v·F1·F2·F3·v

3v·p1
−

v·F1·F2·V12·F3·v

3v·p1v·p12

−
v·F1·F3·V1·F2·v

3v·p1v·p13
, (4)

where Fµν
i := pµi ε

ν
i−εµi p

ν
i , and V µν

τ := vµ
∑

j∈τ p
ν
j = vµpντ .

Note that gauge invariance is manifest except in the case
of N (1, v), where it follows from three-point kinematics.

Following [10, 16, 17], the pre-numerators are pre-
sumed to be constructible in an algebraic fashion, by
multiplying abstract generators of the kinematic algebra
via a fusion product,

N (12 . . . n−2, v) := 〈T(1) $ T(2) $ · · · $ T(n−2)〉 , (5)
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1 2 3

↔ N ([[1, 2], 3], v) , d[[1,2],3] = p212p
2
123 , (2)

where pi1...ir := pi1 + · · ·+pir and the red square denotes
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The BCJ numerator N (Γ, v) is a function of a nested
set of labels Γ, and it has an expansion which parallels
that of the commutator, e.g.

N ([1, [2, 3]], v) = N (123, v)−N (132, v)

−N (231, v) +N (321, v) , (3)
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v·P , where P is a
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N (12, v) = −
v·F1·F2·v

2v·p1
,

N (123, v) =
v·F1·F2·F3·v

3v·p1
−

v·F1·F2·V12·F3·v

3v·p1v·p12

−
v·F1·F3·V1·F2·v

3v·p1v·p13
, (4)

where Fµν
i := pµi ε

ν
i−εµi p

ν
i , and V µν

τ := vµ
∑

j∈τ p
ν
j = vµpντ .

Note that gauge invariance is manifest except in the case
of N (1, v), where it follows from three-point kinematics.
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N (12 . . . n−2, v) := 〈T(1) $ T(2) $ · · · $ T(n−2)〉 , (5)
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where m(ρ|σ) is called the propagator matrix [80]. It is the same matrix as describes
doubly color-ordered amplitudes in the bi-adjoint φ3 theory [81–85]. This matrix is

related (by a pseudoinverse) to the Kawai-Lewellen-Tye (KLT) matrix [20, 48, 49].
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The kinematic algebra underlying the color-kinematics duality was first systematically

studied by Monteiro and O’Connell in ref. [71]. They concluded that the self-dual Yang-
Mills sector (which only gives non-zero amplitudes for the all-plus-helicity sector at one
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related (by a pseudoinverse) to the Kawai-Lewellen-Tye (KLT) matrix [20, 48, 49].
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The kinematic algebra underlying the color-kinematics duality was first systematically
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Indeed, the cubic-graph decomposition (2.1) is not unique because of the Jacobi-identity
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tudes with two heavy particles and an arbitrary number
of gluons/gravitons. Interestingly, the obtained fusion
product has the same structure as the quasi-shuffle prod-
uct, known from the mathematical literature, specifically
in the context of combinatorial Hopf algebras of shuffles
and quasi-shuffles [27–29]. The quasi-shuffle Hopf alge-
bra generates all ordered partitions for a given set [27]
(often called SC – the linear species of set compositions,
or ordered partitions). Mapping the generators to gauge-
invariant expressions, we obtain a closed formula for all
tree-level BCJ numerators relevant to the HEFT. The
numerators are gauge invariant, manifestly crossing sym-
metric and factorise into lower-point numerators on the
massive poles. The underlying quasi-shuffle Hopf alge-
bra implies that the counting of the number of terms in
a numerator with n−2 gluons gives the Fubini number
Fn−3, which counts the number of ordered partitions of
n−3 elements.

Finally, all the considerations in HEFT directly trans-
late to pure YM theory. The pure-gluon BCJ numera-
tors, and the corresponding expressions for the genera-
tors, are obtained from the natural on-shell factorisation
limit [10], which removes the two heavy particles and re-
places them with an additional gluon (with label n−1).
This is straightforward: replace the heavy-particle veloc-
ity v with the last polarisation vector, v → εn−1, and
impose the last on-shell condition p21...n−2 → 0. This op-
eration does not modify the generator fusion rules, and
hence YM theory admits the same kinematic algebra.
The heavy-mass poles become spurious in this limit, and
cancel out once the amplitude is assembled.

THE HEFT KINEMATIC ALGEBRA

A novel colour-kinematic duality and double copy for
HEFT was obtained in [10], by four of the present au-
thors. Ignoring couplings, the YM and gravity tree
amplitudes with two heavy particles and n−2 glu-
ons/gravitons are

A(12 . . . n−2, v) =
∑

Γ∈ρ

N (Γ, v)

dΓ
,

M(12 . . . n−2, v) =
∑

Γ∈ρ̃

[

N (Γ, v)
]2

dΓ
,

(1)

where ρ (ρ̃) denotes all (un)ordered nested commutators
of the particle labels {1, . . . , n−2}, where the leftmost
label is fixed to 1. The ordering is important since here
we work with colour-ordered YM amplitudes. Consid-
ering the set {1, 2, 3}, we have ρ = {[[1, 2], 3], [1, [2, 3]]}
and ρ̃ = {[[1, 2], 3], [[1, 3], 2], [1, [2, 3]]}. In general, labels
1, . . . , n−2 are reserved for the gluons/gravitons and the
heavy particles are assigned n−1 and n, and v is the
velocity that characterises the heavy particles.

The nested commutators are in one-to-one correspon-
dence with cubic graphs (and hence BCJ numerators),
and the corresponding massless scalar-like propagator de-
nominators are denoted as dΓ. For instance, the nested
commutator [[1, 2], 3] corresponds to the following cubic
graph, associated BCJ numerator, and propagator de-
nominator:

1 2 3

↔ N ([[1, 2], 3], v) , d[[1,2],3] = p212p
2
123 , (2)

where pi1...ir := pi1 + · · ·+pir and the red square denotes
the heavy-particle source.

The BCJ numerator N (Γ, v) is a function of a nested
set of labels Γ, and it has an expansion which parallels
that of the commutator, e.g.

N ([1, [2, 3]], v) = N (123, v)−N (132, v)

−N (231, v) +N (321, v) , (3)

and we refer to the object N (1 . . . n−2, v) as the pre-
numerator. In analogy with a Lie algebra, this quantity
should be obtained by multiplying generators through an
associative fusion product. Thanks to the nested commu-
tator structure, the BCJ numerators will automatically
satisfy kinematic Jacobi identities.

Explicit pre-numerators can be obtained from the con-
straint imposed by requiring that they lead to correct
amplitudes, and in [10] this was done up to six points.
In the following, it will be crucial to find representations
of the pre-numerators where any non-locality will corre-
spond to a massive physical pole ∼ 1

v·P , where P is a
sum of gluon momenta [30]. This linearised propagator
arises because of the large-mass expansion. Our results
will be an improvement compared to [10], since in that
work additional spurious poles were present in the pre-
numerators. We find the following explicit new results
up to five points:

N (1, v) = v·ε1 ,

N (12, v) = −
v·F1·F2·v

2v·p1
,

N (123, v) =
v·F1·F2·F3·v

3v·p1
−

v·F1·F2·V12·F3·v

3v·p1v·p12

−
v·F1·F3·V1·F2·v

3v·p1v·p13
, (4)

where Fµν
i := pµi ε

ν
i−εµi p

ν
i , and V µν

τ := vµ
∑

j∈τ p
ν
j = vµpντ .

Note that gauge invariance is manifest except in the case
of N (1, v), where it follows from three-point kinematics.

Following [10, 16, 17], the pre-numerators are pre-
sumed to be constructible in an algebraic fashion, by
multiplying abstract generators of the kinematic algebra
via a fusion product,

N (12 . . . n−2, v) := 〈T(1) $ T(2) $ · · · $ T(n−2)〉 , (5)
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τ := vµ
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j∈τ p
ν
j = vµpντ .

Note that gauge invariance is manifest except in the case
of N (1, v), where it follows from three-point kinematics.

Following [10, 16, 17], the pre-numerators are pre-
sumed to be constructible in an algebraic fashion, by
multiplying abstract generators of the kinematic algebra
via a fusion product,

N (12 . . . n−2, v) := 〈T(1) $ T(2) $ · · · $ T(n−2)〉 , (5)

2

tudes with two heavy particles and an arbitrary number
of gluons/gravitons. Interestingly, the obtained fusion
product has the same structure as the quasi-shuffle prod-
uct, known from the mathematical literature, specifically
in the context of combinatorial Hopf algebras of shuffles
and quasi-shuffles [27–29]. The quasi-shuffle Hopf alge-
bra generates all ordered partitions for a given set [27]
(often called SC – the linear species of set compositions,
or ordered partitions). Mapping the generators to gauge-
invariant expressions, we obtain a closed formula for all
tree-level BCJ numerators relevant to the HEFT. The
numerators are gauge invariant, manifestly crossing sym-
metric and factorise into lower-point numerators on the
massive poles. The underlying quasi-shuffle Hopf alge-
bra implies that the counting of the number of terms in
a numerator with n−2 gluons gives the Fubini number
Fn−3, which counts the number of ordered partitions of
n−3 elements.

Finally, all the considerations in HEFT directly trans-
late to pure YM theory. The pure-gluon BCJ numera-
tors, and the corresponding expressions for the genera-
tors, are obtained from the natural on-shell factorisation
limit [10], which removes the two heavy particles and re-
places them with an additional gluon (with label n−1).
This is straightforward: replace the heavy-particle veloc-
ity v with the last polarisation vector, v → εn−1, and
impose the last on-shell condition p21...n−2 → 0. This op-
eration does not modify the generator fusion rules, and
hence YM theory admits the same kinematic algebra.
The heavy-mass poles become spurious in this limit, and
cancel out once the amplitude is assembled.

THE HEFT KINEMATIC ALGEBRA

A novel colour-kinematic duality and double copy for
HEFT was obtained in [10], by four of the present au-
thors. Ignoring couplings, the YM and gravity tree
amplitudes with two heavy particles and n−2 glu-
ons/gravitons are

A(12 . . . n−2, v) =
∑

Γ∈ρ

N (Γ, v)

dΓ
,

M(12 . . . n−2, v) =
∑

Γ∈ρ̃
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N (Γ, v)
]2

dΓ
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(1)

where ρ (ρ̃) denotes all (un)ordered nested commutators
of the particle labels {1, . . . , n−2}, where the leftmost
label is fixed to 1. The ordering is important since here
we work with colour-ordered YM amplitudes. Consid-
ering the set {1, 2, 3}, we have ρ = {[[1, 2], 3], [1, [2, 3]]}
and ρ̃ = {[[1, 2], 3], [[1, 3], 2], [1, [2, 3]]}. In general, labels
1, . . . , n−2 are reserved for the gluons/gravitons and the
heavy particles are assigned n−1 and n, and v is the
velocity that characterises the heavy particles.

The nested commutators are in one-to-one correspon-
dence with cubic graphs (and hence BCJ numerators),
and the corresponding massless scalar-like propagator de-
nominators are denoted as dΓ. For instance, the nested
commutator [[1, 2], 3] corresponds to the following cubic
graph, associated BCJ numerator, and propagator de-
nominator:

1 2 3

↔ N ([[1, 2], 3], v) , d[[1,2],3] = p212p
2
123 , (2)

where pi1...ir := pi1 + · · ·+pir and the red square denotes
the heavy-particle source.

The BCJ numerator N (Γ, v) is a function of a nested
set of labels Γ, and it has an expansion which parallels
that of the commutator, e.g.

N ([1, [2, 3]], v) = N (123, v)−N (132, v)

−N (231, v) +N (321, v) , (3)

and we refer to the object N (1 . . . n−2, v) as the pre-
numerator. In analogy with a Lie algebra, this quantity
should be obtained by multiplying generators through an
associative fusion product. Thanks to the nested commu-
tator structure, the BCJ numerators will automatically
satisfy kinematic Jacobi identities.

Explicit pre-numerators can be obtained from the con-
straint imposed by requiring that they lead to correct
amplitudes, and in [10] this was done up to six points.
In the following, it will be crucial to find representations
of the pre-numerators where any non-locality will corre-
spond to a massive physical pole ∼ 1

v·P , where P is a
sum of gluon momenta [30]. This linearised propagator
arises because of the large-mass expansion. Our results
will be an improvement compared to [10], since in that
work additional spurious poles were present in the pre-
numerators. We find the following explicit new results
up to five points:
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YM numerators at any multiplicity given by an associative Hopf algebra  
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where the T(i)s are generators carrying the gluon label i,
and ! denotes the bilinear and associative fusion prod-
uct. The angle bracket represents a linear map from the
abstract generators to gauge- and Lorentz-invariant func-
tions. It preserves the multi-linearity with respect to the
polarisation vectors and the linear scaling in the velocity
v of the heavy particles.

The starting point of the construction is 〈T(i)〉 = v·εi,
which is the unique choice that respects all the properties
listed above, and furthermore generates the correct three-
point amplitude. We can then combine two generators
to obtain

N (12, v) := 〈T(1) ! T(2)〉 = −〈T(12)〉 , (6)

where we choose 〈T(12)〉 =
v·F1·F2·v

2v·p1
to reproduce Eq. (4)

[31]. Similarly, at five points one finds

T(12) ! T(3) = −T(123) + T(12),(3) + T(13),(2) , (7)

with

〈T(123)〉 =
v·F1·F2·F3·v

3v·p1
, 〈T(12),(3)〉 =

v·F1·F2·V12·F3·v

3v·p1v·p12
,

〈T(13),(2)〉 =
v·F1·F3·V1·F2·v

3v·p1v·p13
. (8)

The particular index assignments in the obtained genera-
tors are consistent with a general formula, which we find
to work to any number of points,

〈T(1τ1),(τ2),...,(τr)〉 :=
τ1 τ2 · · · τr1

=
v·F1τ1 ·VΘ(τ2)·Fτ2 · · ·VΘ(τr)·Fτr ·v

(n−2)v·p1v·p1τ1 · · · v·p1τ1τ2···τr−1

. (9)

The τis are ordered non-empty sets such that τ1∪τ2∪· · ·∪
τr = {2, 3, . . . , n−2} and τi ∩ τj = ∅, i.e. they constitute
a partition. The set Θ(τi) consists of all indices to the
left of τi and smaller than the first index in τi; that is
Θ(τi) = ({1} ∪ τ1 ∪ · · · ∪ τi−1) ∩ {1, . . . , τi[1]}. Note that
the denominators in Eq. (9) are the advertised massive
propagators. For convenience, we also define Fτi as the
ordered contraction of several linearised field strengths
Fµν
j with indices in τi, e.g. Fµν

12 = Fµα
1 F ν

2α.

To clarify the formula, consider a non-trivial example,
T(1458),(26),(37), that is mapped to

〈T(1458),(26),(37)〉 =
v·F1458·V1·F26·V12·F37·v

8v·p1 v·p1458 v·p124568
. (10)

We may further clarify the Θ(τi)s by drawing a “musi-
cal diagram”, where the gluon labels (notes) are filled in
progressively from left to right and each horizontal line
indicates which set in the partition they belong to:

(1τ1) 1 4 5 8

(τ2) 2 6

(τ3) 3 7

(11)

A given Θ(τi) is associated with the first gluon on the
horizontal line τi, and the set includes all labels “south-
west” of this gluon. Specifically, in this example, the
relevant sets used in Eq. (10) are Θ(26) = {1}, and
Θ(37) = {1, 2}. Furthermore, the contraction of field
strengths can be read out by following each horizon-
tal τi-line in this musical diagram. A horizontal line
can be thought of as the fundamental representation of
the Lorentz group, and the linearised field strengths as
Lorentz generators acting in this space.

Let us return to the algebra of the abstract generators.
The pre-numerators can be recursively constructed from
only knowing the following fusion product:

T(1τ1),(τ2),...,(τr) ! T(j). (12)

We assume that the possible outcome of this fusion prod-
uct maintains the relative order of the labels in the left
and right generator. Then by assuming we have a com-
plete set of generators, we can only produce the terms

T(1j),(τ1),(τ2),...,(τr), T(1τ1),(τ2),...,(τi),(j),(τi+1),...,(τr),

T(1τ1),(τ2),...,(τij),...,(τr), where i ∈ {1, · · · , r}. (13)

By writing up a general ansatz, and fixing the free coef-
ficients by comparing to the correct amplitudes via the
map in Eq. (9), we find a simple all-multiplicity solution.
The fusion product is captured by the general formula

T(1τ1),...,(τr) ! T(j) =
∑

σ∈{(τ1),...,(τr)} {(j)}

T(1σ1),...,(σr+1)

−
r

∑

i=1

T(1τ1),...,(τi−1),(τij),(τi+1),...,(τr) , (14)

where denotes the shuffle product between two sets,
e.g. {A,B} {C} = {ABC,ACB,CAB}. A proof for
Eq. (14) will be given in the next section; here we will
study examples. For n = 4, 5, Eqs. (6) and (7) are recov-
ered, and at six points, the fusion products are

T(123) ! T(4) = −T(1234) + T(123),(4) + T(14),(23)

T(12),(3) ! T(4) = −T(12),(34) − T(124),(3)

+ T(12),(3),(4) + T(12),(4),(3) + T(14),(2),(3)

T(13),(2) ! T(4) = −T(13),(24) − T(134),(2) + T(13),(2),(4)

+ T(13),(4),(2) + T(14),(3),(2) , (15)

leading to the six-point pre-numerator

N (1234, v) = 〈−T(12),(3),(4) − T(12),(4),(3) − T(14),(2),(3)

− T(14),(3),(2) − T(13),(2),(4) − T(13),(4),(2)

+ T(123),(4) + T(124),(3) + T(134),(2)

+ T(12),(34) + T(13),(24) + T(14),(23) − T(1234)〉 .
(16)

As already advertised, the algebra defined by the fusion
product in Eq. (14) is known in the context of combina-
torial Hopf algebras of shuffles and quasi-shuffles [27–29].
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indicates which set in the partition they belong to:

(1τ1) 1 4 5 8

(τ2) 2 6

(τ3) 3 7

(11)

A given Θ(τi) is associated with the first gluon on the
horizontal line τi, and the set includes all labels “south-
west” of this gluon. Specifically, in this example, the
relevant sets used in Eq. (10) are Θ(26) = {1}, and
Θ(37) = {1, 2}. Furthermore, the contraction of field
strengths can be read out by following each horizon-
tal τi-line in this musical diagram. A horizontal line
can be thought of as the fundamental representation of
the Lorentz group, and the linearised field strengths as
Lorentz generators acting in this space.

Let us return to the algebra of the abstract generators.
The pre-numerators can be recursively constructed from
only knowing the following fusion product:

T(1τ1),(τ2),...,(τr) ! T(j). (12)

We assume that the possible outcome of this fusion prod-
uct maintains the relative order of the labels in the left
and right generator. Then by assuming we have a com-
plete set of generators, we can only produce the terms

T(1j),(τ1),(τ2),...,(τr), T(1τ1),(τ2),...,(τi),(j),(τi+1),...,(τr),

T(1τ1),(τ2),...,(τij),...,(τr), where i ∈ {1, · · · , r}. (13)

By writing up a general ansatz, and fixing the free coef-
ficients by comparing to the correct amplitudes via the
map in Eq. (9), we find a simple all-multiplicity solution.
The fusion product is captured by the general formula

T(1τ1),...,(τr) ! T(j) =
∑

σ∈{(τ1),...,(τr)} {(j)}

T(1σ1),...,(σr+1)

−
r

∑

i=1

T(1τ1),...,(τi−1),(τij),(τi+1),...,(τr) , (14)

where denotes the shuffle product between two sets,
e.g. {A,B} {C} = {ABC,ACB,CAB}. A proof for
Eq. (14) will be given in the next section; here we will
study examples. For n = 4, 5, Eqs. (6) and (7) are recov-
ered, and at six points, the fusion products are

T(123) ! T(4) = −T(1234) + T(123),(4) + T(14),(23)

T(12),(3) ! T(4) = −T(12),(34) − T(124),(3)

+ T(12),(3),(4) + T(12),(4),(3) + T(14),(2),(3)

T(13),(2) ! T(4) = −T(13),(24) − T(134),(2) + T(13),(2),(4)

+ T(13),(4),(2) + T(14),(3),(2) , (15)

leading to the six-point pre-numerator

N (1234, v) = 〈−T(12),(3),(4) − T(12),(4),(3) − T(14),(2),(3)

− T(14),(3),(2) − T(13),(2),(4) − T(13),(4),(2)

+ T(123),(4) + T(124),(3) + T(134),(2)

+ T(12),(34) + T(13),(24) + T(14),(23) − T(1234)〉 .
(16)

As already advertised, the algebra defined by the fusion
product in Eq. (14) is known in the context of combina-
torial Hopf algebras of shuffles and quasi-shuffles [27–29].

See talks à Chen, 
Brown

Brandhuber, 
Brown, Chen, 
Gowdy,
Travaglini ‘22



First complete Kinematic Algebra ?
Pure Chern-Simons: complete kinematic algebra at tree/loop level  

In order to prove that this object obeys the color-kinematics duality, it is convenient to
re-express it using the identity ✏µ1µ2µ3✏⌫1⌫2⌫3 = 3! �[µ1

⌫1 �µ2
⌫2 �

µ3]
⌫3 , as well as momentum conser-

vation and transversality "i · pi = 0, giving

2✏"4"3⌫✏⌫p12µ✏
µ"2"1 = "4 · p3✏

"1"2"3 � "1 · p2✏
"2"3"4 � "2 · p1✏

"3"1"4 � "3 · p4✏
"1"2"4 . (3.11)

In this form it is not hard to see that that the cyclic sum cyclic(1, 2, 3) vanishes, and hence
the off-shell BCJ numerator obeys the Jacobi identity. Since we made no assumptions about
the momentum or the external sources, the above s-channel numerator can be inserted into
any multiparticle tree-level (or loop-level) diagram and the Jacobi identity will hold. Along
similar lines, it can be shown that correlation functions involving Faddeev-Popov ghosts
also satisfy the Jacobi identity, but this will naturally emerge once we employ the superfield
notation in section 4.

3.3 Generators for the kinematic algebra

Having established that the standard formulation of Chern-Simons theory (without Faddeev-
Popov ghosts) obeys the color-kinematics duality, it should now be possible to find an ex-
plicit representation of the kinematic algebra. Indeed, we can define momentum-dependant
generators

Lµ(p) = eip·x�µ⌫@⌫ , (3.12)

where �µ⌫ is a transversality-enforcing projector, identified with the Fourier-transform of
the b operator,

�µ⌫(p) = i✏⇢µ⌫p⇢ . (3.13)

The generators form an infinite-dimensional Lie algebra,

[Lµ(p1), L
⌫(p2)] = Fµ⌫

⇢ L
⇢(p1 + p2) , (3.14)

where the Fµ⌫
⇢ are the structure constants, which also depend on the two momenta corre-

sponding to the upper indices,

Fµ1µ2
⌫(p1, p2) = �⇢µ1(p1)✏⇢⌫��

�µ2(p2) . (3.15)

One can easily verify that the structure constants are related to the Chern-Simons three-
point interaction, contracted with two propagator numerators in momentum space.

To obtain BCJ numerators from this kinematic algebra, we simply compute nested
commutators of the generators. For example, the numerator corresponding to five off-shell
Chern-Simons fields (in momentum space) is

1

2 3 4

5
= tr

⇣
[[[Lµ1(p1), L

µ2(p2)], L
µ3(p3)], L

µ4(p4)], L
µ5
amp(p5)

⌘
(3.16)

= Fµ1µ2
⌫F

⌫µ3
⇢F

⇢µ4µ5�3(p1+p2+p3+p4+p5) , (3.17)

where, in order to avoid over-counting projectors, the last generator Lµ
amp(p) = eip·x@µ is

amputated. We take the tr(· · · ) operation to be formally defined as

tr
�
Lµ(p)L⌫

amp(q)
�
⌘ �3(p+ q)�µ⌫ , (3.18)
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Generators 
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re-express it using the identity ✏µ1µ2µ3✏⌫1⌫2⌫3 = 3! �[µ1
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⌫3 , as well as momentum conser-
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"1"2"4 . (3.11)

In this form it is not hard to see that that the cyclic sum cyclic(1, 2, 3) vanishes, and hence
the off-shell BCJ numerator obeys the Jacobi identity. Since we made no assumptions about
the momentum or the external sources, the above s-channel numerator can be inserted into
any multiparticle tree-level (or loop-level) diagram and the Jacobi identity will hold. Along
similar lines, it can be shown that correlation functions involving Faddeev-Popov ghosts
also satisfy the Jacobi identity, but this will naturally emerge once we employ the superfield
notation in section 4.

3.3 Generators for the kinematic algebra

Having established that the standard formulation of Chern-Simons theory (without Faddeev-
Popov ghosts) obeys the color-kinematics duality, it should now be possible to find an ex-
plicit representation of the kinematic algebra. Indeed, we can define momentum-dependant
generators

Lµ(p) = eip·x�µ⌫@⌫ , (3.12)

where �µ⌫ is a transversality-enforcing projector, identified with the Fourier-transform of
the b operator,

�µ⌫(p) = i✏⇢µ⌫p⇢ . (3.13)
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where the Fµ⌫
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Fµ1µ2
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One can easily verify that the structure constants are related to the Chern-Simons three-
point interaction, contracted with two propagator numerators in momentum space.

To obtain BCJ numerators from this kinematic algebra, we simply compute nested
commutators of the generators. For example, the numerator corresponding to five off-shell
Chern-Simons fields (in momentum space) is

1

2 3 4

5
= tr
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[[[Lµ1(p1), L

µ2(p2)], L
µ3(p3)], L

µ4(p4)], L
µ5
amp(p5)
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where, in order to avoid over-counting projectors, the last generator Lµ
amp(p) = eip·x@µ is

amputated. We take the tr(· · · ) operation to be formally defined as

tr
�
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3D transversality “projector”

In order to prove that this object obeys the color-kinematics duality, it is convenient to
re-express it using the identity ✏µ1µ2µ3✏⌫1⌫2⌫3 = 3! �[µ1

⌫1 �µ2
⌫2 �

µ3]
⌫3 , as well as momentum conser-

vation and transversality "i · pi = 0, giving

2✏"4"3⌫✏⌫p12µ✏
µ"2"1 = "4 · p3✏
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"1"2"4 . (3.11)

In this form it is not hard to see that that the cyclic sum cyclic(1, 2, 3) vanishes, and hence
the off-shell BCJ numerator obeys the Jacobi identity. Since we made no assumptions about
the momentum or the external sources, the above s-channel numerator can be inserted into
any multiparticle tree-level (or loop-level) diagram and the Jacobi identity will hold. Along
similar lines, it can be shown that correlation functions involving Faddeev-Popov ghosts
also satisfy the Jacobi identity, but this will naturally emerge once we employ the superfield
notation in section 4.

3.3 Generators for the kinematic algebra

Having established that the standard formulation of Chern-Simons theory (without Faddeev-
Popov ghosts) obeys the color-kinematics duality, it should now be possible to find an ex-
plicit representation of the kinematic algebra. Indeed, we can define momentum-dependant
generators

Lµ(p) = eip·x�µ⌫@⌫ , (3.12)

where �µ⌫ is a transversality-enforcing projector, identified with the Fourier-transform of
the b operator,

�µ⌫(p) = i✏⇢µ⌫p⇢ . (3.13)

The generators form an infinite-dimensional Lie algebra,

[Lµ(p1), L
⌫(p2)] = Fµ⌫

⇢ L
⇢(p1 + p2) , (3.14)

where the Fµ⌫
⇢ are the structure constants, which also depend on the two momenta corre-

sponding to the upper indices,

Fµ1µ2
⌫(p1, p2) = �⇢µ1(p1)✏⇢⌫��

�µ2(p2) . (3.15)

One can easily verify that the structure constants are related to the Chern-Simons three-
point interaction, contracted with two propagator numerators in momentum space.

To obtain BCJ numerators from this kinematic algebra, we simply compute nested
commutators of the generators. For example, the numerator corresponding to five off-shell
Chern-Simons fields (in momentum space) is

1

2 3 4

5
= tr

⇣
[[[Lµ1(p1), L

µ2(p2)], L
µ3(p3)], L

µ4(p4)], L
µ5
amp(p5)

⌘
(3.16)

= Fµ1µ2
⌫F

⌫µ3
⇢F

⇢µ4µ5�3(p1+p2+p3+p4+p5) , (3.17)

where, in order to avoid over-counting projectors, the last generator Lµ
amp(p) = eip·x@µ is

amputated. We take the tr(· · · ) operation to be formally defined as

tr
�
Lµ(p)L⌫

amp(q)
�
⌘ �3(p+ q)�µ⌫ , (3.18)
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Infinite-dimensional
kinematic Lie algebra 

In order to prove that this object obeys the color-kinematics duality, it is convenient to
re-express it using the identity ✏µ1µ2µ3✏⌫1⌫2⌫3 = 3! �[µ1

⌫1 �µ2
⌫2 �

µ3]
⌫3 , as well as momentum conser-

vation and transversality "i · pi = 0, giving
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"3"1"4 � "3 · p4✏
"1"2"4 . (3.11)

In this form it is not hard to see that that the cyclic sum cyclic(1, 2, 3) vanishes, and hence
the off-shell BCJ numerator obeys the Jacobi identity. Since we made no assumptions about
the momentum or the external sources, the above s-channel numerator can be inserted into
any multiparticle tree-level (or loop-level) diagram and the Jacobi identity will hold. Along
similar lines, it can be shown that correlation functions involving Faddeev-Popov ghosts
also satisfy the Jacobi identity, but this will naturally emerge once we employ the superfield
notation in section 4.

3.3 Generators for the kinematic algebra

Having established that the standard formulation of Chern-Simons theory (without Faddeev-
Popov ghosts) obeys the color-kinematics duality, it should now be possible to find an ex-
plicit representation of the kinematic algebra. Indeed, we can define momentum-dependant
generators

Lµ(p) = eip·x�µ⌫@⌫ , (3.12)

where �µ⌫ is a transversality-enforcing projector, identified with the Fourier-transform of
the b operator,

�µ⌫(p) = i✏⇢µ⌫p⇢ . (3.13)

The generators form an infinite-dimensional Lie algebra,

[Lµ(p1), L
⌫(p2)] = Fµ⌫

⇢ L
⇢(p1 + p2) , (3.14)

where the Fµ⌫
⇢ are the structure constants, which also depend on the two momenta corre-

sponding to the upper indices,

Fµ1µ2
⌫(p1, p2) = �⇢µ1(p1)✏⇢⌫��

�µ2(p2) . (3.15)

One can easily verify that the structure constants are related to the Chern-Simons three-
point interaction, contracted with two propagator numerators in momentum space.

To obtain BCJ numerators from this kinematic algebra, we simply compute nested
commutators of the generators. For example, the numerator corresponding to five off-shell
Chern-Simons fields (in momentum space) is

1

2 3 4

5
= tr
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⌘
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⌫F
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where, in order to avoid over-counting projectors, the last generator Lµ
amp(p) = eip·x@µ is

amputated. We take the tr(· · · ) operation to be formally defined as
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Lµ(p)L⌫

amp(q)
�
⌘ �3(p+ q)�µ⌫ , (3.18)
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Ben-Shahar, HJ

Kinematic structure constants

In order to prove that this object obeys the color-kinematics duality, it is convenient to
re-express it using the identity ✏µ1µ2µ3✏⌫1⌫2⌫3 = 3! �[µ1

⌫1 �µ2
⌫2 �

µ3]
⌫3 , as well as momentum conser-

vation and transversality "i · pi = 0, giving

2✏"4"3⌫✏⌫p12µ✏
µ"2"1 = "4 · p3✏

"1"2"3 � "1 · p2✏
"2"3"4 � "2 · p1✏

"3"1"4 � "3 · p4✏
"1"2"4 . (3.11)

In this form it is not hard to see that that the cyclic sum cyclic(1, 2, 3) vanishes, and hence
the off-shell BCJ numerator obeys the Jacobi identity. Since we made no assumptions about
the momentum or the external sources, the above s-channel numerator can be inserted into
any multiparticle tree-level (or loop-level) diagram and the Jacobi identity will hold. Along
similar lines, it can be shown that correlation functions involving Faddeev-Popov ghosts
also satisfy the Jacobi identity, but this will naturally emerge once we employ the superfield
notation in section 4.

3.3 Generators for the kinematic algebra

Having established that the standard formulation of Chern-Simons theory (without Faddeev-
Popov ghosts) obeys the color-kinematics duality, it should now be possible to find an ex-
plicit representation of the kinematic algebra. Indeed, we can define momentum-dependant
generators

Lµ(p) = eip·x�µ⌫@⌫ , (3.12)

where �µ⌫ is a transversality-enforcing projector, identified with the Fourier-transform of
the b operator,

�µ⌫(p) = i✏⇢µ⌫p⇢ . (3.13)

The generators form an infinite-dimensional Lie algebra,

[Lµ(p1), L
⌫(p2)] = Fµ⌫
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⇢(p1 + p2) , (3.14)

where the Fµ⌫
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Fµ1µ2
⌫(p1, p2) = �⇢µ1(p1)✏⇢⌫��

�µ2(p2) . (3.15)

One can easily verify that the structure constants are related to the Chern-Simons three-
point interaction, contracted with two propagator numerators in momentum space.

To obtain BCJ numerators from this kinematic algebra, we simply compute nested
commutators of the generators. For example, the numerator corresponding to five off-shell
Chern-Simons fields (in momentum space) is

1

2 3 4

5
= tr

⇣
[[[Lµ1(p1), L

µ2(p2)], L
µ3(p3)], L

µ4(p4)], L
µ5
amp(p5)

⌘
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where, in order to avoid over-counting projectors, the last generator Lµ
amp(p) = eip·x@µ is

amputated. We take the tr(· · · ) operation to be formally defined as
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BCJ numerators

Lie algebra of 3D volume-preserving diffeomorphisms! 
See talk à Ben-Shahar



Double Copy Theories



Example: pure GR
Pure 4D Einstein gravity: HJ, Ochirov

Does not match YM2 spectrum: 

Deform YM theories with massless fundamental quarks

Anti-align the spins of the quarks à gives scalars in GR

e.g. become ghosts if 



Example: YM-Einstein theory

GR+YM = YM⌦ (YM+ �3)
Chiodaroli, Gunaydin, 
HJ, Roiban

N = 0,1,2,4 YM-E 
supergravity

N = 0,1,2,4 SYM YM +

GR+YM amplitudes are “heterotic” double copies 

�3

hµ⌫ ⇠ Aµ ⌦A⌫

Aµa ⇠ Aµ ⌦ �a

-N =0,1,2 YM-E all have axion-dilaton states 
- Construction extends to SSB (Coulomb branch) Chiodaroli, Gunaydin, HJ, Roiban (’15)



Web of double-copy constructible theories 
5 A WEB OF DOUBLE-COPY-CONSTRUCTIBLE THEORIES

Figure 17: Schematic rendition of the web of theories. Nodes represent the main double-copy-
constructible theories discussed in this section, which include gravitational theories (rectangular
nodes), string theories (oval nodes) and non-gravitational theories (octagonal nodes). Undirected
links are drawn between theories that have a common gauge-theory factor in their construction
(di�erent gauge-theory factors correspond to di�erent colors). Directed links connect theories
obtained by modifying/deforming both gauge-theory factors (e.g. adding matter, assigning VEVs).
Details are given throughout Sec. 5.3.

5 A web of double-copy-constructible theories
As we have seen in the previous sections, the duality between color and kinematics and
the double-copy construction express amplitudes of gravitational theories in terms of sim-
pler building blocks from gauge theory. It has become clear that this property is not an
accident of few very special theories, but extends to large classes of gravitational and non-
gravitational theories. Seemingly unrelated theories have been shown to share—and thus
be connected by—the same set of building blocks, yielding a “web of theories” which can
be analyzed with double-copy methods (see Fig. 17). In this section, we aim to probe this
web more in detail. Particularly prominent results will be the classification of homogeneous
N = 2 Maxwell-Einstein supergravities [282], which can be reproduced and streamlined
by double-copy methods, the double-copy construction for YME [120, 125, 257, 283] and
gauged supergravities [123, 284], and the construction for Dirac-Born-Infeld (DBI) theories

60

See reviews [1909.01358], [2203.13013] – Bern, Carrasco, Chiodaroli, HJ, Roiban



Generalizations of C/K & double copy

à Theories that are not truncations of N=8 SG
à Theories with fundamental matter
à Spontaneously broken theories (gauge/susy)
à Form factors                                      & CFT correlators
à Gravity off-shell symmetries from YM  
à Classical (black hole) solutions
à Gravitational radiation/potential 
à Amplitudes in curved background 
à CHY scattering eqs, twistor strings
à Scalar EFTs: NLSM, DBI, Galileon
à New double copies for string theory  
à Conformal gravity
à Celestial amplitudes
à Non-perturbative DC
à New massive DCs:

® Bern, Carrasco, HJ (’10) 

Mafra, Schlotterer, Stieberger, Taylor, Broedel, Carrasco…
… Azevedo, Marco Chiodaroli, HJ, Schlotterer

HJ, Nohle; Mogull, Teng; Menezes

Luna, Monteiro, O’Connell, White; Ridgway, Wise; Goldberger,...  

Chiodaroli, Gunaydin, HJ, Roiban

HJ, Ochirov; Chiodaroli, Gunaydin, Roiban,…

Trees à loops:

HJ, Ochirov; Chiodaroli, Gunaydin, Roiban,…

Cachazo, He, Yuan, Skinner, Mason, Geyer, Adamo, Monteiro,..

Boels, Kniehl, Tarasov, Yang
Anastasiou, Borsten, Duff, Hughes, Nagy,...

Adamo, Casali, Mason, Nekovar;  Herderschee, Roiban, Teng

Casali, Puhm; Sharma; Monteiro; Brown, Gowdy, Stieberger, Taylor

Luna, Monteiro, Nicholson, O’Connell, White; Goldberger,..
Bern, Cheung, Roiban, Solon; Bjerrum-Bohr et al. ..

Cachazo, He, Yuan; Du, Chen; Cheung, Shen; Elvang et al. 

Farrow, Lipstein, McFadden

Momeni, Rumbutis, Tolley; Engelbrecht, Jones, Paranjape; Carrillo González; 
Burger, Emond, Moynihan; Lust, Markou, Mazloumi, Stieberger …

See talks à Mangan, Wikeley, Markou, Moynihan, Engelbrecht; Monteiro; Brown, Gowdy

Cheung, Mangan, Parra-Martinez, Shah; Armstrong-Williams, White, Wikeley, Stark-Muchão, …



Loop calculations -- CK duality & double copy



N=4 SYM @ 4-loops: 85 diagrams, 2 masters
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Complete N=2 SQCD 2-loop calculation
HJ, Kälin, Mogull (‘17)

e.g. simple SQCD 
numerators

- two-loop SQCD amplitude
- color-kinematics manifest
- planar + non-planar
- massless quarks
- integrand valid in D ≤ 6

Integrand computed using color-kinematics duality 
and supersymmetric decomposition

trace-rep. from
1811.09604
Kälin, Mogull, 
Ochirov
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Figure 5: A complete list of non-vanishing graphs and graphs corresponding to master

numerators. The eight master graphs that we choose to work with are (1)–(5), (13), (19)

and (22). While tadpoles and external bubbles are dropped from the final amplitudes it is

useful to consider them at intermediate steps of the calculation.

In the MHV sector we provide two alternative solutions. The first of these

includes non-zero numerators corresponding to bubble-on-external-leg and tadpole

diagrams — diagrams (17)–(24) in fig. 5. All of these diagrams have propagators of

the form 1/p2 ⇠ 1/0 that are ill-defined in the on-shell limit (unless amputated away).

Their appearance in the solution follow from certain desirable but auxiliary relations

that we choose to impose on the color-dual numerators, making them easier to find

through an ansatz. As we shall see, contributions from these diagrams either vanish

upon integration or can be dropped because the physical unitarity cuts are insensitive

to them. However, as they potentially can give non-vanishing contributions to the

ultraviolet (UV) divergences in N = 2 SQCD, we also provide an alternative color-

dual solution in which such terms are manifestly absent. The two solutions may be

found in separate ancillary files.

To aid the discussion we generally represent numerators pictorially (as we have

– 18 –
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Perfecting one-loop BCJ numerators ?

All-multiplicity numerators modulo contact terms:
Edison, He, HJ, Schlotterer, Teng, Zhang

=

=N=4
SYM

Explicit numerators for 6-7pt N = 4 SYM and 5pt N = 2 SYM in d-dim



Double copy and black hole amplitudes



Binary black hole merger in three phases:

I will focus on the  
conservative potential (figure from 1610.03567)

Double copy and gravitational waves

Explicit PM calculations done using double copy:
Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove (‘18)
Bern, Cheung, Roiban, Shen, Solon, Zeng (‘19)+ Ruf, Parra-Martinez (‘21)
Brandhuber, Chen, Travaglini, Wen (21)

Some methods developed for PM calc. using double copy:
Bjerrum-Bohr, Cristofoli, Damgaard, Gomez+Brown;
Cristofoli, Gonzo, Kosower, O’Connell;
Maybee, O’Connell, Vines; Luna, Nicholson, O'Connell, White; …

See talks à Roiban, Alessio, Aoude, Pichini, Ochirov



Gravitational radiation
LIGO/VIRGO observations à motivates high-order PN, PM calcs. 

BH gravitational scattering analog non-abelian
gauge-theory process

Using double copy 
for GW, potentials,
observables :

Goldberger, Ridgway; Prabhu, Thompson; Li, 
Luna, Monteiro, Nicholson, O'Connell, White; Shen;
Plefka, Steinhoff, Wormsbecher; Plefka, Shi, Steinhoff, Wang;
Maybee, O'Connell, Vines;
Bern, Cheung, Roiban, Shen, Solon, Zeng;
Bern, Kosmopoulos, Luna, Roiban, Teng;
Bern, Parra-Martinez, Roiban, Ruf, Shen; […]



Removing the dilaton ?
For massive processes the dilaton couples to mass 

see e.g. 
Luna, Nicholson, O’Connell, White;
Plefka, Shi, Wang;
HJ, Ochirov

Luna, Nicholson, O’Connell, WhiteCan be removed by compensating diagrams
or projectors applied to on-shell states Bern, Cheung, Roiban, Shen, Solon, Zeng;

Carrasco, Vazquez-Holm
However, methods not completely satisfactory:
à What it the most efficient approach?
à Is removal complete for all physical processes? 
à General framework for different theories?  (cf. HJ, Ochirov for pure GR)



AHH amplitudes   ßà Kerr BH?
Arkani-Hamed, Huang, Huang (‘17) wrote down natural higher-spin ampl’s:

where in general there are additional terms of O(p2−m2) in the numerator that

contribute off shell. These terms depend on the details of the Lagrangian formulation
of the theory.

For the case of spin-1/2 and spin-3/2, additional terms are not expected, and
the propagators are

∆(1/2)(ε, ε̄) = i
/p+m

p2 −m2
,

∆(3/2)(ε, ε̄) = i
(/p +m) ε.ε̄+ 1

3(/ε+
p·ε
m )(/p−m)(/̄ε+ p·ε̄

m )

p2 −m2
, (2.37)

with ε.ε̄ = εµ(ηµν− pµpν
m2 )ε̄ν . The propagators with free Lorentz indices can be obtained

by taking an appropriate number of derivatives ∂
∂εµ and ∂

∂ε̄ν that act on ∆(s+1/2)(ε, ε̄).
This will automatically symmetrize the Lorentz indices on each side of the propagator

matrix.

3 Higher-spin three-point amplitudes

We now consider amplitudes for a pair of spin-s particles using the massive spinor-
helicity formalism. To avoid displaying unimportant overall normalization factors in

the spinor-helicity formulae, we denote amplitudes with either straight or calligraphic
symbols. The calligraphic ones, A(1, 2, . . . , n) for gauge theory andM(1, 2, . . . , n) for
gravity, are more suitable for covariant formulae that use polarization vectors. The

straight ones, A(1, 2, . . . , n) and M(1, 2, . . . , n), are more suitable for spinor-helicity
expressions. Their relative normalizations are

A(1, 2, . . . , n) = (−1)!s"
(√

2e
)n−2

A(1, 2, . . . , n),

M(1, 2, . . . , n) = (−1)!s"
(κ

2

)n−2
M(1, 2, . . . , n).

(3.1)

where e is the gauge theory (electric) coupling, κ is the gravitational coupling, with
κ2 = 32πGN . The ceiling function #s$ takes into account phases that depend on the
spin of the massive particle, which appear due to our mostly-minus metric signature

choice. Furthermore, sometimes it is convenient to set e = 1 or κ = 1, in which case
the two normalizations simply differ by powers of

√
2 and signs.

3.1 Spinor-helicity three-point amplitudes

It was proposed by Arkani-Hamed, Huang and Huang [99] that the most natural
three-point amplitudes between two massive higher-spin particles and a gauge boson
should be the following maximally-chiral objects:

A(1φs, 2φ̄s, 3A+) = mx
〈12〉2s

m2s
, A(1φs, 2φ̄s, 3A−) =

m

x

[12]2s

m2s
(3.2)

– 12 –

spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 〈12〉2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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Root-Kerr 3pt:

Kerr 3pt: 

Let us check if the two contributions responsible for the quantum mismatch

between eq. (3.24) and eq. (3.26) are perhaps related. We find the relation

εs2 ·
( i

m2
p1 ·M · k

)

· εs1 = s(ε1 · ε2)s−1ε2 ·
( 1

m2
(k · Ŝ)2

)

· ε1 , (3.28)

and for s = 1 the two expressions indeed conspire in eq. (3.26) with numerical
coefficients 1/2− 1. However, this still does not add up to the unit coefficient of this
term in eq. (3.24), which through s ≤ 5/2 should give the unique theories that satisfy

tree-level unitarity. That said, the terms proportional to p1 ·M ·k or to ε2 · (k · Ŝ)2 ·ε1
are subleading in the classical limit and thus the quantum difference is irrelevant

for the purpose of describing astrophysical black holes. In conclusion, this analysis
confirms that eq. (3.26) and eq. (3.24) are classically equivalent and match the Kerr

black-hole dynamics.

4 Spinor-helicity Compton amplitudes for s ≤ 5/2

In ref. [99], three-point higher-spin amplitudes, which we discussed in Section 3, were

used together with BCFW recursion [56, 152] to construct candidates for the the
Compton amplitudes with opposite-helicity photons/gravitons. In a later reference
the equal-helicity Compton amplitudes were obtained in the same way [117]. Let us

start by inspecting the photon amplitudes

A(1φs, 2φ̄s, 3A+, 4A+) = i
〈12〉2s[34]2

m2s−2t13t14
, (4.1a)

A(1φs, 2φ̄s, 3A−, 4A+) = i
[4|p1|3〉2−2s([41]〈32〉+ [42]〈31〉)2s

t13t14
, (4.1b)

where s12 = (p1 + p2)2 and tij = (pi + pj)2 − m2. As was discussed in ref. [99],
the opposite-helicity amplitude is well behaved for s ≤ 1, and starting at s = 3/2

it develops a spurious pole corresponding to the factor [4|p1|3〉2−2s. This pole is
unphysical, and must be canceled by adding a contact interaction to the Compton

amplitude, such that it has a compensating spurious pole. Exactly how to do this
in a unique way has not yet been firmly established. In contrast, we see that the
equal-helicity Compton amplitude does not have a spurious pole for any spin. And

this suggests that it should not be corrected by contact terms, although a priori it
cannot be ruled out that it receives corrections that are manifestly free of momentum

poles.
Next, let us quote the corresponding candidate Compton amplitudes for gravity,

which can be obtained via BCFW recursion in the same way [99, 117],

M(1φs, 2φ̄s, 3h+, 4h+) = i
〈12〉2s[34]4

m2s−4s12t13t14
, (4.2a)

M(1φs, 2φ̄s, 3h−, 4h+) = i
[4|p1|3〉4−2s([41]〈32〉+ [42]〈31〉)2s

s12t13t14
. (4.2b)
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Gravity Compton ampl.
via BCFW recursion ? 

Shown to reproduce Kerr by: Guevara, Ochirov, Vines (‘18); Vines (‘17) 
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Problem: spurious pole for



EFTs for root-Kerr AHH amplitudes ?

angle spinors, and letting x → 1/x). The factor with square brackets cancels out

between the denominator and numerator, and the generating function simplifies to

∞
∑

s=0

A(1φs, 2φ̄s, 3A+) =
mx

1− 〈12〉2
m2

, (3.10)

which is indeed the geometric series that describes A(1φs, 2φ̄s, 3A+) in eq. (3.2). The

negative helicity amplitudes A(1φs, 2φ̄s, 3A−) are obtained analogously. This proves
the assertion that eq. (3.7) gives the covariant bosonic amplitudes.

Let us address the question of uniqueness of eq. (3.7). It is straightforward to
check at low spin that there exist no other covariant and parity-even formulae with
lower number of momentum powers (i.e. derivatives in the Lagrangian). Also, one

can confirm that it is not possible to write down Gram-determinant expressions for
the five independent vectors {ε1, ε2, ε3, p1, p2}, since such terms would necessarily be

quadratic in the massless polarization vector ε3 and hence describe interactions of
a graviton rather than a gauge boson. Finally, we note that, given that we assume
parity-even and gauge-invariant interactions, there are only four independent dimen-

sionless variables that can be used to construct the amplitude: two of them involve
ε3, and can be chosen to be the amplitudes AφφA/m and AWWA/m, and the other

two can be chosen as ε1 · ε2 and ε1 · p2 ε2 · p1/m2. The spinor-helicity expressions
appear to only involve three dimensionless variables: 〈12〉/m, [12]/m, and x. How-

ever, because the amplitudes in eq. (3.2) give two equations in these variables, there
is a unique covariantization of the spinor-helicity amplitudes.

It turns out that the generalization to fermionic gauge-theory amplitudes is al-

most identical to the bosonic case. We only need to identify two low-spin amplitudes,
say, spin-1/2 and spin-3/2, and then the other fermionic amplitudes are linear com-

binations of these. In fact, we observe that it is exactly the same linear combinations
that appeared in the bosonic generating function (3.7). Hence, the fermionic ampli-

tudes can be formally resummed as

∞
∑

s=0

A(1φs+1/2, 2φ̄s+1/2, 3A) = AλλA +
AψψA − (ε1 · ε2)2AλλA

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

, (3.11)

where AλλA = i√
2
ū2/ε3v1 is the standard electron-photon three-point amplitude in

quantum electrodynamics, and AψψA is a well-known gravitino-photon amplitude

that is unique in supergravity with spontaneously-broken supersymmetry. The de-
tails of this spin-3/2 amplitude are given in Section 5.1.2; for the current purpose
we only need to know that AψψA comes from parity-even interaction terms that

are linear in the momenta. That the covariant formula eq. (3.11) is correct follows
from analogous arguments to the ones used below eq. (3.9). The uniqueness is less

clear since Gram-determinant expressions can be constructed using the vectors and
higher-rank forms that come from the fermion bilinears ū2γµ1...µnv1. Nevertheless, at
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Rewrite the 3pt AHH amplitudes on covariant form à identify theory

1) introduce generating series, e.g. 

2) rewrite covariantly (both helicity sectors): 

Jµ, associated to a massive higher-spin field, that appropriately vanishes as m → 0

when contracted with one power of its momentum,

pµJ
µ
∣

∣

traceless
= O(m) . (3.6)

We restrict the condition to hold for the traceless part (gamma-traceless part for
fermions) of the contracted current. Since the current constraint holds off-shell, it

is a powerful tool for constraining the higher-spin Lagrangian that gives the three-
point amplitudes (3.2). See Section 5 for Lagrangian constructions based on this

constraint, here we only focus on the current and amplitudes. Naively, the property
(3.6) is somewhat surprising, since the higher-spin amplitudes (3.2) have arbitrarily
high powers of the mass in the denominator, and the massless limits are expected to

be singular rather than soft, at least beyond spin 2.
We will not give the complete details of the off-shell currents here, since they are

quite lengthy objects and contain ambiguities due to their off-shell nature. We will
however show a few steps and then quote the final results for the three-point case.

In Section 5, more details are given using Lagrangians up to spin-5/2.
As a first step, we will find a covariant on-shell formula for the amplitudes (3.2).

This formula will reveal the number of derivatives that are present in the three-

point interactions, and also make manifest that all interactions are parity even. We
will quote the formula now without further delay, and then prove it later. To give

the covariant formula for all bosonic spin-s amplitudes, it is easiest to construct a
generating series,

∞
∑

s=0

A(1φs, 2φ̄s, 3A) = AφφA +
AWWA − (ε1 · ε2)2AφφA

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

, (3.7)

where the spin-0 and spin-1 amplitudes appear abbreviated on the right hand side,

their explicit covariant forms are

AφφA ≡ i
√
2 ε3 ·p1 , AWWA ≡ i

√
2 (ε1 ·ε2 ε3 ·p2+ε2 ·ε3 ε1 ·p3+ε3 ·ε1 ε2 ·p1) . (3.8)

Note that the massive polarization vectors are polynomials of zai and hence the
generating function is a rational function in these variables. Series expansion around

zai = 0 will return the amplitudes for different spins.
To prove that eq. (3.7) is the covariant formula for the resummed amplitudes (3.2),

we simply evaluate the polarization vectors in terms of the spinor-helicity variables.
The denominator evaluates to

(1 + ε1 · ε2)2 +
2

m2
ε1 · p2 ε2 · p1 =

(

1− 〈12〉2

m2

)(

1− [12]2

m2

)

, (3.9)

and the numerator becomes AWWA − (ε1 · ε2)2AφφA = x〈12〉2(m2 − [12]2)/m3 for
positive helicity ε+3 (the negative helicity case is obtained by swapping square and
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spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 〈12〉2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude
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gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(
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(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude

– 16 –

3pt works for any decomposition:

spin-1/2 and spin-3/2, the covariant amplitudes are unique as will be discussed in

Section 5.1.2.
Let us now switch the discussion to gravitational higher-spin amplitudes. Arkani-

Hamed, Huang and Huang [99] gave the following three-point amplitudes:

M(1φs, 2φ̄s, 3h+) = im2x2 〈12〉2s
m2s

,

M(1φs, 2φ̄s, 3h−) = i
m2

x2

[12]2s

m2s
, (3.12)

It is clear from the spinor-helicity expressions that they are related to the gauge-
theory amplitudes by the double copy [61],

M(1φs, 2φ̄s, 3h±) = iA(1φsL, 2φ̄sL, 3A±)A(1φsR, 2φ̄sR, 3A±) , (3.13)

where s = sL + sR, and equivalent formulae are obtained for any sL, sR ≥ 0. Since
this relation is insensitive to the helicity of the massless state, it follows that the

covariant gravitational amplitudes are also given by a double copy of the covariant
gauge-theory amplitudes.

Using the double copy, it is a small step to show that a generating function for
the covariant gravitational amplitudes can be constructed out of the gauge-theory

generating functions. However, because the spin s can be decomposed into sL + sR
in multiple different ways, there is some ambiguity on how to write it. We find that
it is convenient to write a combined generating function for bosonic and fermionic

covariant gravitational amplitudes, which has the form

∞
∑

2s=0

M(1φs, 2φ̄s, 3h) = M0⊕1/2 + AWWA

(

A0⊕1/2 +
A1⊕ 3/2 − (ε1 · ε2)2A0⊕1/2

(1 + ε1 · ε2)2 + 2
m2ε1 · p2 ε2 · p1

)

,

(3.14)

where the sum runs over both integer and half-integer spin s. Here we use the short-
hands A0⊕1/2 = AφφA + AλλA, A1⊕ 3/2 = AWWA + AψψA and M0⊕1/2 = AφφAA0⊕1/2,
which combine the independent low-spin amplitudes that appeared in the bosonic

(3.7) and fermionic (3.11) generating functions. The reason for multiplying the gauge-
theory generating function by AWWA, rather than by AφφA, is that this way of writing

it exposes the correct maximal momentum power counting of the gravity amplitudes.
As an aside, it is interesting to note that we have already identified the gauge-

theory amplitudes AWWA andAψψA, as well-known three-point amplitudes in theories
with spontaneously-broken gauge symmetry (s = 1) and supersymmetry (s = 3/2),
respectively. From this we should expect that some of the low-spin gravitational

amplitudes also have an interesting physical interpretation. Indeed, it is known from
previous work on the double copy [144, 145] that these massive spin-1 and spin-

3/2 gravitational amplitudes, AφφA ×AWWA and AλλA ×AWWA, are precisely those
that appear in R-symmetry gauged supergravity, and the massive spin-2 amplitude

– 16 –

Preferred decomposition                                 give fewest derivatives :

min-coupled matter
(Proca, Rarita-Schwinger)

From double-copy structure:

Kaluza-Klein graviton

Also works for Compton and beyond (Lagrangians known)



Summary of EFTs

The Kerr ampl’s for admit double copies to any multiplicity

Lagrangians unique: have no non-minimal terms beyond cubic order in fields 

Can be used for                 PM/PN calculations.
Compton             to be confirmed via other methods (BHPT, worldline).
See: Bautista, Guevara, Kavanagh, Vines; Aoude, Haddad, Helset;

Cangemi, Chiodaroli, HJ, Ochirov, Pichini, Skvortsov à Pichini



Summary & Outlook
Color-kinematics duality lies at the root of gravity: 
à makes perturbative GR more manageable! 
à allows for simpler classification of gravity theories
à kinematic algebra is a well-hidden gem of YM (and GR)
à useful for PM calculations

Explored amplitudes for massive spinning matter à Kerr BH ?
à Double copy works well up to spin-2 (KK graviton)
à Paolo Pichini can give more details on higher-spin resultss

Not discussed: string theories exhibit novel double copy structures.

Not discussed: C/K duality in AdS space (Herderschee, Roiban, Teng; […])
Not discussed: classical double copies of BH solutions (O’Connell et al. […])
Not discussed:  new massive DC, celestial DC, non-perturbative DC…..

The topic of double copy & CK duality has grown significantly in the last 
few years, you will hear more about it at QCD Meets Gravity Zurich !

Azevedo, Chiodaroli, 
HJ, Schlotterer (‘18)
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Daniel Baumann, Zvi Bern,  Alessandra Buonanno, 
John Joseph Carrasco, Paolo Di Vecchia,  Henrik Johansson,  
Andrea Phum, Oliver Schlotterer 

All forms of gravitational amplitudes and applications: 
- quantum gravity amplitudes, strings, supergravity
- multiloop integration
- gravitational waves and classical GR
- EFT methods
- celestial amplitudes
- cosmology, inflation, 
- curved space amplitudes

Organizers:

Focus event conference:
From Scattering Amplitudes to Gravitational Waves
July 24 – 28, 2023  


