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Neutrino Oscillations
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Neutrinos produced as different types 

● Neutrino types are a 
superposition of mass states

Neutrino 
types

Mass 
states

Mixing matrix



Neutrino Oscillations
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Appearance
probability
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Neutrino
energy

Baseline

Frequency

Neutrinos produced as different types 

● Neutrino types are a 
superposition of mass states

● Mass wavefunctions oscillate at 
different rate→ mixture changes

Neutrino 
types

Mass 
states

Mixing matrix
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Neutrinos produced as different types 

● Neutrino types are a 
superposition of mass states

● Mass wavefunctions oscillate at 
different rate→ mixture changes

Neutrino Oscillations
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Neutrino 
types

Mass 
states

Mixing matrix

Appearance
probability

Amplitude

Neutrino
energy

Baseline

Frequency

Need to measure Type + Energy
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Particle Imaging Detectors Reconstruction

 

D* Meson
BEBC (1978)
Bubble chamber
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Full “particle flow”

Superheated
LH2

Neutrino typing:

● e vs μ produced 

(CC interaction)

Neutrino energy:

● Particle mass 
(type) + range

● Calorimetry
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Particle Imaging Detectors Reconstruction

 

D* Meson
BEBC (1978)
Bubble chamber
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Full “particle flow”

Neutrino typing:

● e vs μ produced 

(CC interaction)

Neutrino energy:

● Particle mass 
(type) + range

● Calorimetry

→ Must be scalable
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Superheated
LH2



Liquid Argon Time Projection Chamber

 LArTPC = main detector 

technology in use with 

high-intensity neutrino 
beams in the US:

● Precise tracking

● Detailed calorimetry

● Dense (1.4 g/cm3)

● Cheap (O(1) $/kg)

● Scalable
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O(1) m
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LArTPC Image

 

νμ
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LArTPC Image
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EM Shower
Track

Distinguishes between 
tracks and showers
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LArTPC Image
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Distinguishes between low 
and high ionization rates

Minimum 
ionizing

Highly 
ionizing
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LArTPC Image
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Resolves γ conversion gap 
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Challenges in LArTPCs

Dense medium → Slow

Electron drift velocity O(1) mm/μs

● Long (O(1) ms) readout window
● Need light association for timing
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High Z material → Messy  

Argon has a large nucleus (Z=18)

● Complicated nuclear physics

● Secondary interactions

ICARUS simulation

νμ

μ-

νμ(4 GeV) + Ar → Λ K0
L
 μ- π+ π0 π0

ICARUS simulation

Primary Secondary
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What is relevant to pattern recognition in a detailed interaction image?
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Input

Physics-Informed ML Reconstruction
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Physics-Informed ML Reconstruction
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Input 1

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity
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Pixel-Level Feature Extraction
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UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor

Input Features

Paper: PhysRevD.102.012005 L. Dominé et al.
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https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://github.com/NVIDIA/MinkowskiEngine
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Physics-Informed ML Reconstruction
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Input 1+2

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)
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Points of Interest
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The Point Proposal Network 

(PPN) uses decoder features

• Three CCN layers to 

narrow ROI

• Last layer reconstructs:

• Relative position to 

pixel center of 

active pixel

• Point type

• Post-processing 

aggregates nearby points

Paper: PhysRevD.104.032004 L. Dominé et al.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Physics-Informed ML Reconstruction
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Input 1+2 3

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)
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Supervised Connected Component Clustering
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Learn a smart version of DBSCAN (connected components)

D. Koh et al.
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Supervised Connected Component Clustering
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Learn a smart version of DBSCAN (connected components)

D. Koh et al.
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Cluster-level feature extraction
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CNN: mostly sensitive to local neighborhood of pixel, but…

● EM showers: photon mean free path in LAr = 18 cm (60 pixels in ICARUS)

● Interactions: π0, K0, Λ, neutrons

νμ(4 GeV) + Ar → Λ K0
L
 μ- π+ π0 π0

ICARUS simulation

Vertex

Related

Related
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Cluster-level feature extraction
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We now represent the set of 
fragments as a set of nodes in a graph 
where edges represent correlations

Node features:

● Centroid
● Covariance matrix
● Start point/direction
● . . .

Edge features:

● Displacement vector
● . . .  

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Cluster-level feature extraction
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Graph Neural Network: develop features useful to node/edge classification

Paper: PhysRevD.104.072004

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)

4. Cluster interactions, identify particle properties in context

Physics-Informed ML Reconstruction
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Input 1+2 4

e-

p+

p+
π+

3 ν
e
, 800 MeV
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Cluster-level feature extraction
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Graph Neural Network: develop features useful to node/edge classification

Paper: PhysRevD.104.072004

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Particles

Interactions

PID +

γγ

μe

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Reconstruction in LArTPCs

Paper: arXiv:2102.01033

End-to-end ML-based reconstruction chain 
● Sparse CNN for pixel-level features, GrapPA for superstructure formation

Sparse Convolutional NN Graph NN

26Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2102.01033


SPINE “Network”

 

Terao Drielsma

Koh
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Usher Dominé

Tsang

Effort starts at 
SLAC in 2019

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



SPINE “Network”

 

Terao Drielsma Usher

Jwa Koh

Mooney Paudel Mueller

Kashur Carber LaZur
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ICARUS ML 
group formed 
in 2020
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Reconstruction Highlights at ICARUS

Points

Excellent performance on a realistic BNB ν + Cosmic sample in ICARUS (NPML ‘23)

Particles Interactions

1 voxel = (3 mm)3

Shower
Track
Michel
Delta
LE Scatter

Semantics

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://indico.slac.stanford.edu/event/8028/contributions/6893/attachments/3306/8999/NPML2023%20ML-Based%20Reconstruction%20for%20LArTPCs.pdf


Applications at SBN
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Several physics analyses using SPINE on the way within ICARUS:

● BNB νμ selections (J. Mueller, L. Kashur), see Dan’s talk yesterday

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://indico.phys.ethz.ch/event/113/contributions/877/


Applications at SBN
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Several physics analyses using SPINE on the way within ICARUS:

● BNB νμ selections (J. Mueller, L. Kashur), see Dan’s talk yesterday

● BNB/NuMI ν
e
 selections (D. Koh, D. Carber),  see Dae’s talk yesterday
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https://indico.phys.ethz.ch/event/113/contributions/877/
https://indico.phys.ethz.ch/event/113/contributions/868/


Applications at SBN
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Several physics analyses using SPINE on the way within ICARUS:

● BNB νμ selections (J. Mueller, L. Kashur), see Dan’s talk yesterday

● BNB/NuMI ν
e
 selections (D. Koh, D. Carber),  see Dae’s talk yesterday

● Michel electron reconstruction (Y. Jwa), see Yeon-Jae’s talk today
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https://indico.phys.ethz.ch/event/113/contributions/877/
https://indico.phys.ethz.ch/event/113/contributions/868/
https://indico.phys.ethz.ch/event/113/contributions/876/


SPINE “Network”

 

Mooney Mueller

Kashur Carber

Carlson Fan

Oza

Balasubramanian

Terao Drielsma Usher

Jwa Koh

33

Expanded 
group to 
SBND in 
2022 (SBN 
ML)

Rajagopalan

Paudel

LaZur
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Applications at SBN
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Several physics analyses using SPINE on the way within ICARUS:

● BNB νμ selections (J. Mueller, L. Kashur), see Dan’s talk yesterday

● BNB/NuMI ν
e
 selections (D. Koh, D. Carber),  see Dae’s talk yesterday

● Michel electron reconstruction (Y. Jwa), see Yeon-Jae’s talk today

Excellent work to port the chain to SBND:

● Early BNB νμ selection (B. Carslon, C. Fan), see Bear’s talk today

● Michel electron reconstruction (N. Oza)

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://indico.phys.ethz.ch/event/113/contributions/877/
https://indico.phys.ethz.ch/event/113/contributions/868/
https://indico.phys.ethz.ch/event/113/contributions/876/
https://indico.phys.ethz.ch/event/113/contributions/865/


SPINE “Network”

 

Terao Drielsma Tsang

Usher Jwa Chen

Douglas Koh
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Kramer

Wolcott Micallef

Kumaran

Mooney Mueller

Kashur Carber

Carlson Fan

Djurcic Azam

Neogi

Oza

Utaegbulam

Balasubramanian

Rajagopalan

Created ML 
group on 2x2 
in 2023

Paudel

LaZur
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LArTPC Technologies

Wire planes → Set of 2D projections (SBND, ICARUS, μBooNE, DUNE-FD)

ICARUS Data

Scalable Particle Imagining with Neural Embeddings, F. Drielsma
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LArTPC Technologies

Pixel plane → Single natively 3D image (DUNE-ND, 2x2 prototype)

ICARUS Data

Scalable Particle Imagining with Neural Embeddings, F. Drielsma
LArPIX, arXiv:1808.02969

https://arxiv.org/pdf/1808.02969


The DUNE-ND prototype
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Credit: J. Micallef
Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Training/Validation sample
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Training sample generated using the DeepLearnPhysics generator

● 1-3 particle bombs (multi-particle vertex, aka MPV)

● 1-5 single particles (multi-particle rain, aka MPR)

MPV

MPR

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://github.com/DeepLearnPhysics/DLPGenerator


Training/Validation sample

40

Training sample generated using the DeepLearnPhysics generator

● 1-3 particle bombs (multi-particle vertex, aka MPV)

● 1-5 single particles (multi-particle rain, aka MPR)

MPV

MPR

Issue with Module 2 (WIP)
● Ignored for metrics in this talk

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://github.com/DeepLearnPhysics/DLPGenerator


Training/Validation sample
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Training sample generated using the DeepLearnPhysics generator

● 1-3 particle bombs (multi-particle vertex, aka MPV)

● 1-5 single particles (multi-particle rain, aka MPR)

MPV

MPR

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Properties/challenges with 2x2:
● Pixel TPC 
● Modular (gaps)
● Tiny (~1.2 m3)
● Multi-GeV neutrinos (x10 BNB)

https://github.com/DeepLearnPhysics/DLPGenerator


Semantic Segmentation
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Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Classify pixels 
into categories 
with UResNet

2x2 simulation

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Semantic Segmentation
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Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Semantic Segmentation

44

Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Observations/challenges:
● Michel/Delta <1% of pixels

○ + thick tracks = bad delta visibility
● Low training stats (200k images)
● 99% track/shower separation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest
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Identify start points of showers and end points of tracks

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Identify particle 
end points

2x2 simulation

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest
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Identify start points of showers and end points of tracks

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest
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Identify start points of showers and end points of tracks

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Observations/challenges:
● Points predicted at module breaks

○ Understandable impurity

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Dense Fragment Formation
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Break track/shower fragment instances where constituent pixels touch

● Cluster track/shower fragments at this stage

2x2 simulation

Classify pixels 
into dense 
clusters

Paper: arXiv:2007.03083

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2007.03083


Dense Fragment Formation
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Break track/shower fragment instances where constituent pixels touch

● Cluster track/shower fragments at this stage

2x2 simulation

Paper: arXiv:2007.03083Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2007.03083


Dense Fragment Formation
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Break track/shower fragment instances where constituent pixels touch

● Cluster track/shower fragments at this stage

2x2 simulation

Paper: arXiv:2007.03083

Observations/challenges:
● Overzealous shower fragmentation

○ Needs further study
○ Aggregator can pick up slack

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2007.03083


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Aggregate 
particle 
fragments 

Paper: PhysRevD.104.072004

2x2 simulation2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Paper: PhysRevD.104.072004

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Paper: PhysRevD.104.072004

2x2 simulation

Observations/challenges:
● Guess how many showers here?

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Paper: PhysRevD.104.072004

2x2 simulation

Observations/challenges:
● Guess how many showers here?
● … high energy pi0 are hard

○ Highly collinear showers

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation
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Aggregate 
particles

Paper: PhysRevD.104.072004

2x2 simulation 2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation

56Paper: PhysRevD.104.072004

2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation

57Paper: PhysRevD.104.072004

2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation

58Paper: PhysRevD.104.072004

2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Observations/challenges:
● Multiplicity higher than NuMI
● Some invisible vertices

○ No obvious convergence point
● Some activity exits then re-enters

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Primary Identification

59Paper: PhysRevD.104.072004

2x2 simulation

Identify particle originating from the primary vertex

● Secondaries — Primaries

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Accuracy: 91 %

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Primary Identification

60Paper: PhysRevD.104.072004

2x2 simulation

Identify particle originating from the primary vertex

● Secondaries — Primaries

Observations/challenges:
● NuMI energies harder than BNB

○ Many secondary interactions
● Primary vertex not always obvious

?

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


e-

p+
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Beyond LArTPCs

Multi-detector training:

● J. Micallef looking into Minerva integration, see her talk later today!

● This would be directly apply to ND-LAr + TMS!

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://indico.phys.ethz.ch/event/113/contributions/847/


SBN-2x2 Joint ML Workshop

Goal: Familiarize analyzers with the inner workings of the ML-based reco. chain

Where: Tufts University, Boston, MA

When: 22-26 July, join us!!! https://indico.slac.stanford.edu/event/8926/

2023 ML workshop at CSU

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://indico.slac.stanford.edu/event/8926/


e-

p+
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Conclusions

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

SPINE keeps progressing:

● Sparse-UResNet for pixel-level 

features + GNNs for aggregation

● ICARUS on the cusp of multiple 

physics papers using this pipeline

● SBND and 2x2 (high neutrino 

energy) simulation studies 

progressing fast! Stay tuned…

● Check out this brand new 2x2            
interactive reconstructed event! 

https://s3df.slac.stanford.edu/people/drielsma/event_full_2x2_sim_mpvmpr.html


Backup Slides



Two US-based neutrino oscillation experiments use/will use LArTPCs

DUNE and SBN

65

Deep Underground Neutrino 
Experiment (DUNE), 2028-?

Short Baseline Neutrino (SBN) 
program, 2015-2027

1300 km: enhance matter effects

● Mass ordering, CP violation

● DUNE-FD rate: O(103) ν / year

●

0.6 km: observe anomalies

● New type of neutrino?

● SBN S/B ratio: ~ O(10-5)

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Neutrinos oscillate (change flavor states)

● Observed in many experiments

○ Atmospheric, beams, reactors, solar

● They must have mass (≠ minimal SM)

Neutrino Oscillations

66

Mass splitting

Baseline

Neutrino energy

Choice of
experiment

Mixing 
matrix

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Particle Imaging Detectors

 Illustrious History

● Crucial tool for 

particle 

discoveries 

since the 1930s

● How does 

reconstruction 

work?

Cloud chamber

Bubble chamber

67

Data rate

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



e-
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Scalability

On ICARUS:

● 1 s / event, leveraging 

GPU acceleration

● ~1.5 M BNB beam 

events / yr

Implications:

● Fast software 
development (testing)

● Fast turnaround 

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



MiniBooNE was a short baseline neutrino experiment

● Booster Neutrino Beam (BNB) at Fermilab
● Scintillator-based Cherenkov detector

The MiniBooNE Low Energy Excess

69

600 MeV

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



MiniBooNE observed excess of “electron-like” neutrino events (LSND-like)

The MiniBooNE Low Energy Excess

70

PhysRevD.103.052002

4.8 sigma excess…

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002


Other interpretation: we just don’t understand neutrino cross-sections…

The MiniBooNE Low Energy Excess

71

Low-energy 
“electron-like” events 
dominated by νμ NC-γ 
and CC-π0 background

PhysRevD.103.052002

4.8 sigma excess…

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002


MiniBooNE’s limitations: Cannot tell electrons from photons

The MiniBooNE Low Energy Excess

72

Single e and single-γ 
events indistinguishable

π0 →γγ events 
indistinguishable from e 
if one gamma missing

μ/e separation reliable

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



The ICARUS Detector
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The largest LArTPC in operation is ICARUS

● 500 t fiducial mass  (2 cryos, 4 TPCs)

● First operation in early 2000s underground (CNGS), at FNAL since 2018 

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



LArTPC Image
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Scattering wiggles gives 
momentum estimate

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



LArTPC Image
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Delta rays provide 
directionality

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



The Weight of Expectations

 Honorable mention: EM showers from low energy 
● Crucial for solar + supernovae physics

● Particular interest at SLAC: A. Friedland et al.

76Scalable Particle Imagining with Neural Embeddings, F. Drielsma



arXiv:2211.01166

The Weight of Expectations

 Honorable mention: EM showers from low energy 
● Crucial for solar + supernovae physics

● Particular interest at SLAC: A. Friedland et al.
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arXiv:2008.06647

Expectation Reality

DUNE CDR

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2211.01166
https://arxiv.org/abs/2008.06647


Tomographic Reconstruction

78

In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

● First task: combine projections into one 3D image

ICARUS simulationICARUS simulation

Remove 
artifacts with 
UResNet

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Tomographic Reconstruction

79

In a wire TPC, we do not get 3D images, but rather 3 x 2D projections

● First task: combine projections into one 3D image

ICARUS simulation

BNB νμ  only

98.7% overall

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Message passing

80

Two feature update steps

1. Edge update

2. Node update

Repeat n times (depth) 

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Edge Selection

81

The GNN gives you a list of edge 
scores, not a partition

For the best partition, ĝ, we must 

select edges which minimizes the 

partition CE loss Classification at the 
partition level!

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Edge Selection

82

Instead, iterate:

1. Compute partition loss for   the 

empty graph

2. Add the most likely edge, 

compute loss again

3. If L
n+1

 < L
n
, update partition

4. Repeat until the next best edge 

has s
ij
 < 0.5

 

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Semantic Segmentation

83

Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Pa
pe

r: 
Ph

ys
Re

vD
.1

02
.0

12
00

5

BNB νμ  only

ICARUS simulation

99.1% overallScalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest

84

Narrow down a region proposal all the way to a point 

● Predict masks at different scales with UResNet, predict position in pixel

Pa
pe

r: 
Ph

ys
Re

vD
.1

04
.0

32
00

4

ICARUS simulation

1 pixel = 3x3x3 mm3

BNB νμ  only

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Dense Fragment Formation

85

Break track/shower fragment instances where they touch

● Cluster track/shower fragments at this stage

Pa
pe

r: 
ar

Xi
v:

20
07

.0
30

83

ICARUS simulation

Fragments BNB νμ  only

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2007.03083


Particle Aggregation

86

Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Pa
pe

r: 
Ph

ys
Re

vD
.1

04
.0

72
00

4

Particles

ICARUS simulation

BNB νμ  only
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation

87

Aggregate track/shower particle instances into interactions

● Find edges that connect fragments particles that belong together

Pa
pe

r: 
Ph

ys
Re

vD
.1

04
.0

72
00

4

Interactions

ICARUS simulation

BNB νμ  + Cosmics

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Identification

88

Particle species much easier to infer in context

● Michel decays, secondary hadrons, shower conversion gaps, etc.

Generic dataset (particle bombs)Photon
Electron
Muon
Pion
Proton

ICARUS simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Particle Identification

89

Particle species much easier to infer in context

● Michel decays, secondary hadrons, shower conversion gaps, etc.

Generic dataset (particle bombs)Photon
Electron
Muon
Pion
Proton

ICARUS simulation
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Important to know which particle originate from the vertex

● Central to any exclusive analysis (study specific interaction channels)

Primary Identification

90

ICARUS simulation

Secondary
Primary

1μ2p1π0

Accuracy: 89%

BNB νμ  primaries only

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Currently using traditional techniques for particle energy reconstruction:
● Range-based energy reconstruction of muons and protons

Primary muons
Contained  (46 %)

Primary protons
Contained (89%)

Particle energy reconstruction

91

D. Koh et al.

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Currently using traditional techniques for particle energy reconstruction:
● Range-based energy reconstruction of muons and protons
● Calorimetric energy reconstruction of electrons

Particle energy reconstruction

92

Primary muons
Contained  (46 %)

Primary protons
Contained (89%)

Primary photons

Scalable Particle Imagining with Neural Embeddings, F. Drielsma



Particle Identification

93Paper: PhysRevD.104.072004

2x2 simulation

Classify particles within interactions into different species

● Electron, Photons, Muons, Pions, Protons

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Identification

94Paper: PhysRevD.104.072004

2x2 simulation

Classify particles within interactions into different species

● Electron, Photons, Muons, Pions, Protons

Observations/challenges:
● Currently no stat weighting
● Some invisible vertices

○ No obvious shower gaps
● Lack of Bragg peak (tracks)

○ Particles mostly not contained
○ Lots of nuclear interactions

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


95HEP Institutional Review 2022

e-

p+π+

95

Open Source

DeepLearnPhysics collaboration (ML techniques R&D)

● Public LAr simulation

○ Potential for open real data from prototypes

● Shared software dependencies with Docker/Singularity

● Open reconstruction software on GitHub

● Reproducible results: PhysRevD.102.012005

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

http://deeplearnphysics.org/
https://osf.io/bu4fp/
https://hub.docker.com/r/deeplearnphysics/larcv2
https://github.com/DeepLearnPhysics/lartpc_mlreco3d
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005

