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SBN program at Fermilab

Short-Baseline Neutrino Program at Fermilab

Target SBND MicroBooNE ICARUS

e SBND, MicroBooNE, and ICARUS receive Fermilab’s Booster Neutrino
Beam (BNB) at different baselines.

e ICARUS, the far detector of SBN program, is the current largest running
LArTPC with 600T volume, and it has been taking data since 2022.
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Michel Electrons
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Cosmic rays crash into the Earth's atmosphere, creating a stream of Theoretically calculated Michel energy.
new particles, among them muons. (Graphic: A. Vlasov/IAEA) (Image credit: Laura Dominé, 2023)

e Michel electrons are produced by the decay-at-rest of cosmic-ray muons.

e Michels have a well understood energy spectrum ranging up to ~50 MeV.

e Michel reconstruction demonstrates the detector’s capability in low-energy electron
reconstruction.
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Michel electron energy depositions in LAr

e The energy loss of Michel electrons in liquid argon has two contributing parts;
electron ionization and photon radiation.

ICARUS Work In Progress
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Michel reconstruction using SPINE
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Find more details on SPINE in Francois’ talk
End-to-End, Machine-Learning-Based Data Reconstruction Chain for LArTPC detectors Francois Drielsma
HCI J4, ETH Zurich 14:10 - 14:35
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Sample

e Sample used:

o MC: BNB+Corsika simulation
(~21k events)

o Data: ICARUS Run2 on-beam
(~17k events)

e Typically ~3 stopping cosmic
muons with Michels per event in
ICARUS.

o Total 60,691 true Michels are
found in the MC sample,
56,492 are reconstructed as

Michels by SPINE
reconstruction.
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Michel selection

Candidate Michels are fully contained within a
detector module (5 cm margin) and consist of at
least 20 reconstructed voxels.

Candidate Michel and track are closer than 3 cm (10
voxels)

When 4.5cm (15 voxels) mask is applied on the
touching point, the number of clusters after masking
is should be larger by 1 or equal than the
non-masked to ensure the Michel is attached at the
end (see the example on the right.)

Primary ionization is defined as the closest cluster
from the touching point after above selection.

Attached at
the end

(1—2 clusters
after masking)

Attached in the
middle (1—-3
clusters after
masking)

,@/

Primary ionization
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Selection performance

e Candidate Michels selected using the criteria are matched to true michels.

o One-to-one matching done using intersection-over-union between true and
candidate michel voxels

e Selection efficiency: matched michels / true michels
e Selection purity: matched michels / candidate michels

. . ICARUS Work In Progress
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Selection performance - understanding mistakes

e Missed true michels
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in reconstruction
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Selection performance - understanding mistakes
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Selection performance - understanding mistakes

e Missed true michels

o Very small true michels falil
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Michel energy reconstruction

ICARUS Work In Progress

1 true particle energy

ICARUS Work In Progress

ICARUS Work In Progress
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e Michel reconstructed energy is found after applying shower energy calibration on the
voxel depoistions.
o Details on calibration can be found in Dan’s talk.
NuMI Electron Neutrino Selection at ICARUS with Machine Learning Reconstruction Daniel Carber
HCI J4, ETH Zurich 16:30 - 16:55
e Data/MC distributions are in good agreement in this first look.
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Fractional energy resolution (1)

ICARUS Work In Progress ICARUS Work In Progress
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e Fractional energy resolution of true particle initial energy (E. .) is obtained from
reconstructed Michel energy (E___ ).

e E_istheinferred true particle initial energy from the reconstructed.
o E_.(E.. B)a,where a: slope, B: y-intercept from linear fit of (x,y: E.

init’ Ereco)
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Fractional energy resolution (2)

ICARUS Work In Progress

ICARUS Work In Progress

ICARUS Work In Progress
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e E_, the fractional error in true energy estimation, is definedas (E___-E )/ E .
e E__isbinned by E. . and fitted to Gaussian to obtain the width of the spread.
e 0O in the gaussian fit estimates the fractional energy resolution in the energy bin.
e Fractional energy resolution is found within 25-35% range, with slightly decreasing trend.
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Fractional energy resolution (2)
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e E_, the fractional error in true energy estimation, is definedas (E___-E )/ E .
e E__isbinned by E. . and fitted to Gaussian to obtain the width of the spread.
e 0O in the gaussian fit estimates the fractional energy resolution in the energy bin.
e Fractional energy resolution is found within 25-35% range, with slightly decreasing trend.
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Conclusions

e The initial look on the Michel reconstruction in ICARUS is presented.
o The selection demonstrated 87.6% efficiency, 93.9% purity.
o Fractional energy resolution with respect to true Michel energy is shown.
m Energy resolution is found to be 25%-35% of true particle initial energy.
e There is plenty room for further explorations for this study.
o The selection can further utilize SPINE reconstruction outputs such as track end
point prediction.
o Performance as a function of energy
o Michel direction reconstruction can be also studied to demonstrate the
reconstruction capability.
o Investigate the sources of fractional energy uncertainty
o Systematic uncertainty for the shower energy reconstruction is to be studied.
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Conclusions

e The initial look on the Michel reconstruction in ICARUS is presented.
o The selection demonstrated 87.6% efficiency, 93.9% purity.
o Fractional energy resolution with respect to true Michel energy is shown.
m Energy resolution is found to be 25%-35% of true particle initial energy.
e There is plenty room for further explorations for this study.
o The selection can further utilize SPINE reconstruction outputs such as track end
point prediction.
o Performance as a function of energy
Michel direction reconstruction can be also studied to demonstrate the
reconstruction capability.
Investigate the sources of fractional energy uncertainty
o Systematic uncertainty for the shower energy reconstruction is to be studied.

Thank you for your attention :)
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Back up
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R. Acciarri et al, “Michel electron reconstruction using cosmic-ray data from the MicroBooNE LArTPC”,
2017, JINST, 12 P09014
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# Events

data/MC

Michel reconstruction in ProtoDUNE

A. Abed Abud et al. (DUNE Collaboration), “Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP

detector”, Phys. Rev. D 107, 092012
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Selection performance: Summed ADC
(before shower energy calibration)
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Energetic Michel

) / - Le.genac\il 800 - I_e.genadll
= @ true_all 5 = @ true_all
00 ;:Jcehz:lche\ 500 / . :.;:fh;,;\chel
Detector Detector
00 Ll 400 7
— - —
Do e N 200 "
b / // i _/ //
“ | / =i
00 \ 200 - /
. \ 5
400 ) J
00 —_— nn [ =
Yeon-jae Jwa | NPML 2024, ETH Honggerberg, Zurich, Switzerland 23




