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Motivation

 NMO sensitivity can be enhanced by studying neutrino
oscillations in GeV region

» Jostudy v, oscillations one needs to reconstruct
neutrinos’ direction/energy/flavor (particle type)

» Different neutrino flavor exhibits different oscillation
probabilities between two neutrino mass order

- Signal Charged-Current (CC) vs Background Neutral-
Current (NC)
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- Muon (anti)neutrinos vs electron (anti)neutrinos v
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- Neutrinos vs Antineutrinos v/

- We demonstrate the capability of our ML approach in
performing PID for atmospheric neutrinos
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Scintillation light at the detector

* Light seen by PMTs of an LS detector is a superposition of light
generated from many points along the track

» Shape of light curve received by each PMT depends on :

* Angle w.r.t. track direction &

* Jrack starting and stopping position

* Particle type - different dE/dx
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* Typical LS detectors are designed for low-energy neutrinos -
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Directly feeding full waveform from all PMTs are computationally expensive - features that reflects
the waveforms are extracted to reduce data volume

Methodology

Charge

0.5}

Identification of atmospheric neutrino's flavor in JUNO with machine learning | Wing Yan Ma | 2024.06.25

FHT f

Each PMT

AV,

500

250 300

Medlavw T im¢ ;
§%0 400 450 500 550 600
Time (ns)

- PMT waveforms

 FHT: time of first photon arriving at a PMT
» Slope: average slope of curve at the first 4 ns
 Peak time, peak charge, total charge

 Other features such as median time and four moments (mean, std, skewness, kurtosis)
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Methodology

* The output of the ML models is a set of scores associated for each category for a given event

* By default, the ML models will assign the category with the highest score for each event
« 2-step approach: 3-label classification (NC, (;)ﬂ, (1;)6) followed by v/U classification, expect

the ML models can each learn to specifically perform one classification tasks, either 3-label or
2-label

ML models Output

/ (3_|abe|) scores
’ ML models Output
(v,/,) scores

ML models Output

(v,/7,) scores
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Utilising neutron capture information E.g. CCQE interactions
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« The difference between each CC interactions are also reflected N - 4
by the final state hadrons from v interactions Vp T T H p
17;1 + p — /l+ + N

 Final state neutrons are captured by hydrogens in LS and emit a
2.2 MeV in ~ 200 us, create delayed triggers after primary
iInteractions

» Such events can be selected from delayed trigger with high
efficiency

- The difference between v/v interactions can also be reflected by - o Jas
the hadronic energy fraction variable Y, ,,, = (E, — Ej, 1.,/ E,, ' P V E
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reflected by observables such as neutron multiplicity F.1Gev

)
o
"

» Expect to provide additional power especially for v,/v,
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Two strategies (1)

1. Point cloud-based model: PointNet++, DGCNN

« Features extracted from primary triggers are fed into the PointNet++

- For neutron capture candidates, taking 3D point clouds N X [x, y, z] as inputs to a separate

DGCNN model, capable of recovering neighborhood topology of point clouds with edge
information

« Preserves multiplicity and spacial distributions of neutrons, minimise the information loss

Hierarchical point set feature learning
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Two strategies (1)

Atm. v Primary PMT features PMT point cloud M_achine
candidate trigger (FHT, Slope,...) (Npme X (X, v, z, Iearn-mg model

features)) (PointNet++)
FC layer PID label:
vV IVylvelveINC
neutron _
Secondary trlgger 1 Reconstructed neutron Machine
triggers neutron ’ Point cloud learning model
selection (N, x [x,y, z]) (DGCNN)

neutron
trigger n

e DGCNN is used to extract features from the reconstructed neutron information,
concatenate with PointNet++ model with a FC layer for final output
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Two strategies (2)

2. Spherical CNN: DeepSphere

 Graph-CNN: developed for processing spherical data originally
developed for cosmology studies

* Maintain rotation covariance, Avoid distortions caused by
projection to a planar surface
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Input channels * Use Healpix sampling to define vertices

TR

* Equally divide the sphere into 12 parts

Max pooling Fully connected Layer
Layer

o Further divide each part into N; ,, parts (V,,;, = 2")

\)

Prediction
Block

» Chose N,;,, = 32 total number of pixels: 12288
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Two strategies (2)

Atm. v Primary PMT features
candidate trigger (FHT, Slope,...)

Machine PID label:
learning model v.Iv.Iv.IV.INC
p'VuiVelVe
(DeepSphere)
neutron
Secondary trlgger 1 Merged PMT features
triggers neutron (FHT, nPE)
selection
neutron
tnggern

* Multiple neutron-candidate triggers are merged into one

 FHT and nPE are extracted and feed into model together |
with primary trigger features |
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Evaluating model performance

- Training sample consist of ~25k events for all 5 categories considered (v,-CC, v -CC, 1,-CC, v,-CC,
NC), with flat neutrino energy spectrum [0, 20] GeV to avoid bias in model training

» Testing sample consist of ~5k events for all 5 categories
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» AUC ROC is used to assess models’ performances (optimisation of signal efficiency/background efficiency)
» Does not depend on the choice of score cut

* Not affected by class-imbalance in the dataset
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Results

* We observe the AUC scores as a function of visible energy

* Results are consistent between the two strategies for all classification tasks

* For 3-label classification, AUC scores are calculated for each label (*one-vs-rest”)
and averaged to get the mean AUC score for each energy bin

3-label classification
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Results
5 vs 3+2 classification

1.00
ML models Output Work in progress
(3-label) scores \ 0.95 4
ML models Output PID label § 0.90/ ﬁ++*++++ |
v,/7,) scores AR . T
ot | _y [ome | = 1
(v.]D) scores 0.80 | | |
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 Combining output scores from each model gives 5-label PID —+ can be compared
with a model which directly performs a 5-label classification

 Agreement suggest that the models considered are capable of directly classifying
the 5 categories
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Selected sample
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» Efficiencies and purities can be tuned to obtain an optimised sample for NMO analysis
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Summary

* A novel method of reconstructing atmospheric neutrino
events for LS detector is presented

* [wo strategies with different ML models are developed to
validate the reconstruction method

* Using JUNO MC samples, variables that are crucial to
physics analyses such as direction, energy, particle
Identification of atmospheric neutrinos can be
reconstructed with good resolution
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JUNO Event Rates after selection

Supernova v
5-7k in 10s for 10kpc

Atmospheric v
several/day

A -
Solar v : Yo
(10s-1000s)/day \ , 700 m
| Cosmic muons
N ~ 250k/day
|
\ | 0.003 Hz/m?2
215 GeV
36 GW, 53 km : ‘ * 10% muon bundles
| reactor v, 60/day \ Geo-neutrinos
Bkg: 3.8/day

1.1/day



Cosmic

Atmospheric Neutrinos

» Large flux of atmospheric neutrinos (v ., ) produced by cosmic
ray interactions

Isotropic with different baseline (L) and energy (E)

* Natural source of neutrinos in GeV region
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