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The Deep Underground Neutrino Experiment

( Long baseline (1285 km) oscillation experiment\ High-precision measurements
e 2MW = 2.4 MW beam at Fermilab of neutrino mixing and oscillation
(most intense v beam in the world) fundamental parameters (including CPV)
 Wide-band energy ‘
e Liquid argon time projection chamber technology
* Near detector at Fermilab Astrophysical neutrinos
* Four 17 kton Far Detector modules at SURF Supernova and solar neutrinos

& 1.5 km underground location / ‘

Probe new physics
including nucleon decay
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The Horizontal and Vertical Drift Far Detector

TPC size: 12.0m x 14.0m x 58.2 m. Drift length: 3.5 m 3x3 m2 PCB Anode 2 x 6.5-m vertical drift
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PCB-based charge readout
2 drift volumes defined by a cathode
plane, and 2 PCB-based anode planes

 Modular wire-based charge readout
e 4 drift volumes defined by 5 arrays of
anode and cathode planes



Liquid Argon Time Projection Chamber (LArTPC)

Use scintillation and ionization to -
find 3D position of particles and drift
interactions .
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LArTPC images

Nl
Exquisite tracking and calorimetry capability '
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\ Signal processing and hit

finding steps to go from 3 x 2D collections of hits

raw images to pattern hit = energy measurement
recognition inputs on a given wire, at a given
time
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Pandora reconstruction multi-algorithm approach

e Reconstruction framework in use at all neutrino LArTPC experiments, and applied at linear colliders
* Many logical steps (> 100 algorithms) to go from input hits to 3D hierarchies

* Build different techniques, including deep learning, and physics and detector knowledge in the pattern
recognition algorithms

2D pattern recognition
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Machine learning in Pandora

* \Very diverse event topologies motivate exploiting different techniques
* Broad use of machine learning, and especially Deep Learning (DL)

Highlights:

* Neutrino interaction vertex finding in DUNE
FD (see Andy Chappell’s talk)

e Neutrino interaction vertex finding in the -
DUNE ND (AIDAinnova) T 10em |
* Neutrino interaction vertex finding and - L
background rejection in low-energy w Ej
neutrino signatures LX
e Hierarchy building (see Isobel Mawby’s talk) 30 MeV 26.8 GeV
« New reclustering approaches (this talk) v, CC CEVNS v, CCDIS
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Reclustering approach

* Overlapping showers are challenging to reconstruct, and impact DUNE physics goals
» Showers from % mistaken as single electron are background in appearance analyses

* Tackle via new reclustering approach (STFC-funded project)

e Asimilar approach was successfully used at linear colliders

. Ap’proach'ca_n’ be applied to other topologies, e.g. including tracks

2 we e E — *| Redistribute 3D hits
mistake?

Run multiple algorithms proposing

Does something look alternative clustering of the hits

wrong? Is a better

_ N reconstruction o o o Pick best
Consider particles at outcome based on the VL s ) N outcome
the end of the 3D hits possible? W/ \\\gf / \§ /
reconstruction chain Wi ?* Y*
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https://www.sciencedirect.com/science/article/abs/pii/S0168900212011734?via%3Dihub
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Clustering 3D hits with Graph Neural Networks

* We are investigating DL techniques, such as transformer networks, to identify target topologies
* In this presentation, will assume that target topologies have already been identified

e Start from 3D hits, aim at proposing new possible clustering outcomes

Graph Neural Networks (GNNs) motivation

* Straightforward representation of a 3D

—
cluster of hits as a graph: 3 74

* One3Dcluster =1 graph |7
* Nodes = hits L
 Node features = hit x, y, z, charge

L4

Grey line = false edge

e Canimagine pairs of hits to be connected Black line = true edge
by a positive edge if most energy was
deposited by the same true particle
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Message-passing layers

Leverage GNN message-passing so that local features
know about broader cluster structure

in an Using GraphSAGE architecture

3 * For each layer, aggregate nearby nodes features to
node under consideration (e.g. via averaging)

* Only consider nearby hits within radius, e.g. 10 cm

* Stacking together many layers means
concatenating features from further away


https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GraphSAGE.html?highlight=graphsage
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Message-passing layers

Leverage GNN message-passing so that local features
know about broader cluster structure

Using GraphSAGE architecture
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* For each layer, aggregate nearby nodes features to
node under consideration (e.g. via averaging)

g

* Only consider nearby hits within radius, e.g. 10 cm

* Stacking together many layers means
concatenating features from further away


https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.models.GraphSAGE.html?highlight=graphsage

—

Two GNN-based approaches for clustering

B. Unsupervised clustering
Assign a cluster label to each hit
Future development

A. Supervised edge prediction:
Find all pairs of hits
that are truly connected Message-passing layers

(this talk)

. . Linear transformation +
Linear predictor layer

softmax
Output: Per-hit-pair predicted edge score Per-hit cluster assignment
Loss function: Binary cross-entropy Non-task specific minCUTpool losses
Post-processing necessary? Yes No

10


https://arxiv.org/abs/1907.00481
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Edge prediction GNN performance example

Predicted edge scores
Training and testing samples DUNE work in progress

* About 130 shower particles

* Number of hits > 400 and < 700 - 1M edges

« with >30% contamination (equal number

e 90%-10% training-testing split positive and negative)

Architecture
* 10 SAGEConv layers, 1 predictor layer, 16 hidden channels

0.0 0.2 0.4 0.6 0.8 1.0

Predicted edge scores Blue distribution: true positive edges
« 0.5 cut = typical prediction accuracy around 75-80% Red distribution: true negative edges
* Network could be tuned for further separation

* However, a harder cut on scores may already give good performance in clustering

[How to use the predicted scores to guide 3D hit clustering? ] 1




How to use the GNN output

* There will be ambiguities as the network
output is not perfect

* Bis predicted to be strongly connected to A
and C, but A and C are not predicted to be
strongly connected together

 Four different outcomes

12
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GNN output in clustering algorithms

* Explored the idea of an “average connection score” to quantify how strongly
connected each hit is to its local neighbourood.

0.97
_ (sum of edge scores above threshold within 10 cm) 0.13
Average connection score =
(for each hit) (# neighbouring hits within 10 cm) L] 0.22
u /ﬁ
0.7

0.9

Hope to show splitting points/regions, or differences between particles

— Use to split cluster
0.92
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Merged particles score examples

Average connection score X-Y projection

Colour code: Colour code:
ex. 1 True MC ID Average connection score
DUNE work in progress 221 © DUNE work in progress|  *»{ 3 DUNE work in progress
o ' Ttle e, These topologies are
I L R e “track-like”. Scores may

2.67 2.68 2.69 270 271 272 273 274 275
02 04 06 0.8 10 " 2,67 2.68 269 270 271 272 273 274 275

ex. 2 : be less useful in more

e DUNE work in progress »*[DUNE work in progress_= »«[DUNE work in progress = shower-like to pologles
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Summary

* LArTPCs yield very high resolution images of particle interactions

e State-of-the-art reconstruction crucial to achieve DUNE physics goals

* Some topologies, such as overlapping showers, pose special challenges

* Pandora’s multi-algorithm approach is well placed to tackle these challenges

* Areclustering paradigm, under development in Pandora, allows exploiting
multiple technigues, including deep learning

* Exploring using GNNs, based on graph interpretation of 3D particles
* Initial training of network to predict true connections between hits
* Exploring use of output scores in new clustering algorithms

* |n parallel, exploring an unsupervised clustering approach 5



