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The MicroBooNE Experiment

* Neutrino experiment at Fermilab located along the Booster Neutrino Beamline

* Currently decommissioned (as of 2021) -> 6 years of data taking
* Liquid Argon Time Projection Chamber (LArTPC) technology, like ICARUS, SBND, DUNE...
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The MicroBooNE Detector: LArTPC

» Particle tracks (charge deposits) reconstructed from wire signals
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- Dimensions: 2.3 mx2.6 mx 10.4 m
(size of a school bus)

Y wire plane waveforms

LArTPC schematic. Electrons from ionization
of argon drift to the anode plane. had 90 tons active LAr (170 tons in cryostat) 3



Example MicroBooNE Event Display
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LArMatch

3D Visualization of Charge Deposits  wwae

MICROBOONE-NOTE-1082-PUB

 Reconstruction using the LArMatch network developed by the Tufts
group
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1082-PUB.pdf

The MicroBooNE Detector: Light Detection System

* Liquid argon is a bright scintillator, emits light when hit by radiation
» Set of 32 Photomultiplier Tubes (PMTs): detect scintillation light

3D visualization: more red means higher

8" diameter PMTs along anode side
photoelectron count



The MicroBooNE Detector: Light Detection System

* Liquid argon is a bright scintillator, emits light when hit by radiation
» Set of 32 Photomultiplier Tubes (PMTs): detect scintillation light

Matching of charge with flash In
MicroBooNE helps with triggering

and cosmic ray rejection
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3D visualization: more red means higher

8" diameter PMTs along anode side
photoelectron count



Photon Library in MicroBooNE

* Traditionally, used a lookup table to find the probability of observing a photon
produced at a location in the detector

* Generated simulation of photons emitted isotropically from voxels covering the
volume in the detector

* For all voxel-PMT pairs, calculate visibility: N photons observed / N photons generated

e Save probability in a library
 Computationally expensive but done on one go upfront

* Limitations: Slow to generate, depends on number of voxels, simulation-based, can
be inaccurate in certain regions

* |t has become clear that the traditional photon library generation approach is not
scalable for larger upcoming LArTPC detectors, e.g. in SBN and DUNE



Existing work on improving photon libraries

e Colleagues on MicroBooNE have developed a semi-analytical model, involving an
upfront geometric calculation and then simulation-based fitting

* |s generalized to DUNE and other SBN experiments as well

* Performs better and faster than the photon lookup library method
* Relies on simulation for fitting past the analytical calculation
e Currently used in MicroBooNE and compared to data (public note)

* Light simulation with a 1D generative network (GENN) for protoDUNE/DUNE
» Lightweight/shallow generative network for running at high speed on CPU

 Same level of detail and precision as original photon library approach, but faster and
more scalable

* SIREN: sinusoidal representation networks for photon propagation
 Use a MLP with periodic sine function activations with positional information as input

* Recreates photon library but with fewer parameters than the traditional voxel approach,
so is faster, more scalable, differentiable, and potentially tunable to data

* |s also able to reproduce an acceptance map less sensitive to simulation statistics than
the simulated photon library approach

Semi-Analytical Model:
arxiv.org/abs/2010.00324

1D GENN
arxiv.org/abs/2109.07277
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1119-PUB.pdf
http://arxiv.org/abs/2010.00324
https://arxiv.org/abs/2211.01505
http://arxiv.org/abs/2109.07277

Data-Driven Photon Library

* We are interested in implementing a data-driven photon library in MicroBooNE

* Will allow us to condition on specific runs and detector conditions in MicroBooNE
 Examples: purity, day; we know the MicroBooNE light yield has declined over time

 May also give us some insight on physics; e.g. behavior of out-TPC light
* Colleagues have worked on a “point source” Michel selection in data

My approach is to use custom DL/Al tools developed for MicrobooNE 3D reconstruction
* Can perform a geometric calculation upfront like the semi-analytical model
 Combine with neural network output trained on MicroBooNE data

 Have investigated using a baseline network to compare to a CNN
 We trained a MLP with sinusoidal activations to serve as a baseline
* The following slides will show results
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Input Data to the Network

 Match clusters of tracks/showers corresponding to an interaction with associated flash

* Account for both beam and cosmic events
The red and pink lines correspond to truth

e \oxelize the Charge clusters in 3D MCTracks/MCShowers for debugging. The

X (o network will not see this information.
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Baseline Model for Comparison: SIREN-based

Visibility Mapping
arxiv.org/abs/2211.01505

* Following a path by Patrick Tsang by using a neural network with sinusoidal
activations (SIREN)

o Simple MLP with periodic sine function activations
* Implementation of SIREN from github repo: ‘lucid_rains/siren’

e / Input variables, represents one voxel
* (X,y,z) position, each position normalized to 1 by length of detector

e (dx,dy,dz), distance between the PMT in question and the voxel in the normalized distance
units used for (x,y,2)

* The total distance from the PMT to the voxel, scaled by 1050 cm, roughly the longest
dimension of the detector

* 5 hidden layers, 512 features in each hidden layer (to be optimized)

* One output: visibility, a number between [0,1] for the voxel-PMT pair
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http://arxiv.org/abs/2211.01505

Predicting OpFlash from the Charge

* Every training example has the amount of charge in a set of voxels as well as the PE
for each PMT from the opflash information

* The neural network uses the charge information to calculate PE with:

N
Z q; * Y x ¢($27 Yiy 24, Ami) Aym Azia d)

* Here:
* g is the charge in voxel |
* Y is the light yield (global charge to PE conversion)

@ is the visibility function (output of neural network)
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Training the Baseline Network

* |n training the network, we minimize an objective function with two terms:
* Norm loss: compare predicted PE sum over the PMTs
 Shape loss: compare normalized PE in each PMT

 Normalization loss uses the negative Poisson log-likelihood:

A = predicted PE

_ log E(A|"L') — )\ — log A _I_ lOgCI}' x = ground truth PE

 Shape loss uses the Earth Mover’s Distance, also known as the transport plan:

 Cisthe “cost” between PMT i and |, chosen as location distance

» |1 is the fraction of probability mass from predicted PE to true PE for PMT i to |
 Must be solved for every (x, X’) pair such that it minimizes d

dr o = ), Oz, z)II(z, 2');;

min
z') i<

[I(z,
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Training Methods

* [wo stages in training:
1. Allowed light yield parameter to flow
2. Hold light yield fixed and using data augmentation techniques

* Apply data augmentation:

* Upped weight by a random scale factor between [1,5] for examples with:
total PE below some threshold (<1) in our normalized units and charge-averaged distance
from the anode above 175 cm

* Apply Mixup: Draw two random training examples. Draw two scale factors from uniform
distribution between [0.5, 2]. Add the charge voxels of each example using the scale
factors as weights. Add the ground truth PE vectors to each other using the same scale
factor weights

 We apply both, e.qg. if small charge cluster drawn for mixup example, it can be scaled up

15



Training Plots

 Used cosine annealing for both stages
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Results after Stage 1

* Plots show the PMT-averaged, voxel-averaged visibility function versus the distance from the anode

Captures x-dependence, including bimodal distribution near the anode
follows the trend if you are in front of a pmt cluster, but the visibility drops quickly if you are between the clusters

Problem for examples near the cathode (circled in red), network seems to be predicting zero
* The light from here is usually low, so the model is ignoring it

Note that the reason that the data distribution ends before the cathode is that the position of the charge deposits are not corrected for space charge at
this time
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Results after Stage 2

 Data augmentation helps to avoid zero prediction for charge near the cathode
* Also captures the x-dependence overall

 However, is systematically high
* Possibly from need to provide PE from unobserved charge (outside TPC?)
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Results after Stage 2

» A different view, along the z-axis

 Visibility drop between groupings of PMTs captures somewhat, but the effect is more
smeared out than in the ground truth
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Individual Examples (after stage 2)
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Individual Examples (after stage 2)
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xamples (after stage 2)
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Individual Examples (after stage 2)

* This is an example where the cosmic track passes near the PMT. The network as it is
currently set up cannot account for this: motivates applying CNN on voxels to provide
adjustments
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CNN Architecture: LArMatch-based UResNet

Qc

Qr

{ @ @ } dimensions = 3

‘“stem”
blocks
x3

iInput

channels = x3

Convolution

x16

x16
Encoder/

Decoder pass
(including skip

connection)

4 layers each,
up to x128 features and
back with skip connection

Take feature
tensors from
occupied voxels

(Sparsetensor ->
Torch tensor)

Regression MLP
(N,16) dim feature
tensor -> (N,32)
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CNN Architecture: LArMatch-based UResNet
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Next Steps

* Results from baseline network show that learning the visibility function is possible
with non-point sources

* Can begin to try with data;
* Collect cosmic muon examples from EXTBNB
* Will need to use anode/cathode crossing or CRT information for timing

 Can also use current MC model to bootstrap a dataset by finding events with flashmatch
solution that we can assign a high confidence level to for e.g. events with a low number of

tracks
* Continue working on CNN

* Can help with out-of-TPC charge estimate
 (Can use voxel patterns to determine revelant path length outside of TPC

* Can this address the systematically higher PE prediction?

26
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Semi-Analytical Model

o Steps:

Semi-Analytical Model:
arxiv.org/abs/2010.00324

1. Geometric calculation for the number of photons seen by
a photodetector

* Need to calculate the solid angle subtended by e.g. PMT In
infinite detector

%1_4'_ « 0 €0, 10] deg
O i = 0 e[10, 20] deg
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2. Corrections based on Rayleigh scattering -/ e > 0 <[80,90] deg
. . . . . . 0.6/ OB
 Compute ratio of geometric calculation and with simulated hits :
. . . . . . . ' 0.4—
* Can describe distribution with Gaisser-Hillas functions .
0.2
3. Correction for border effects ; | | | | i |
% 100 200 300 400 500 600

distance [cm]


http://arxiv.org/abs/2010.00324

Semi-Analytical Model Performance

* Plots of bias & resolution for both geometries for VUV light

. Phot. per | Voxel Size | Size®
Library Total Phot. Voxel [cm3] (MB]
SBND-like | 61.4x10° | 192x10° 5%5%5 390
DUNE-like | 353.5x10° | 158x10° | 5x5x11 826
SBND-like |56 90 10° | 500%10° | 5x5x5 | 499
Hi-Res

* Generated lookup library with same number of photons + a "high res" ver. for SBND, uniform distribution
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worse performance at larger
distances due to undersampling

worse performance at very low
distances due to voxel size
(discrete jumps close to PD)

at distances larger than 450 cm,
based on samples of less than 3
photons per voxel-PD pair

Semi-Analytical Model:
arxiv.org/abs/2010.00324
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Implementing Analytical Calculation of Photons on PMT

* Recall this is the first part of the semi-analytical model

solid angle subtended by photodetector
° (disk in uboone) in an infinite detector

N Q —— e @ S , idealized case with no reflections and not

considering Rayleigh scattering

a given energy

deposition scintillation yield of

LAr for a given electric field

* To calculate solid angle, needed to compute elliptical integrals for each (voxel, pmt)
pair
* | used scipy and mpmath in python, which don’t have Pytorch equivalents for running on GPU
* Explored implementation in Cuda for running on GPU

 Decided to calculate upfront for voxelized detector, takes ~23 min
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1D GENN

* One goal is to predict photon distribution
probabilities at high speed using a CPU

* For this reason, use a lightweight generative
architecture

 Use an OuterProduct layer rather than transpose
convolutional (Conv2DTranspose) or upsampling
(UpSampling2D) layers

* 1D vector is represents the “image” of hit pattern on
a PD obtained for each scintillation vertex

* Used as truth from photon library, and output of
GENN

 Does not compared results within the GAN
framework, but rather uses the following loss
function:

Duc(Pl|Q) = | Y (P(2) — Q(x)) log

XZ

P(x) is 1D vector from GENN,
Q(x) is “true” 1D vector from simulation

1D GENN
arxiv.org/abs/2109.07277
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http://arxiv.org/abs/2109.07277

Visibility for voxel-PMT pair
SIREN

Voxel-wise loss f ~ - 45 _
SI REN trZ’i‘,?in;”'i’ﬁ pth:to?,r"brary: Lo = Z Zwij [‘I’j (Xz) — vij] : arxiv.org/abs/2211.01505
x;, €D 7=1 .
. . . . . . . Add noise t imat
» SIREN: implicit neural representation with periodic Voxe‘,‘;,'f;eorf’gf'npaﬁrg,’]‘;’:‘oan‘jlbraw
sinusoidal activation functions I
® Uses Simple MLP With periOdiC Sine funCtiOn Toy Model, PMT=18 Toy Model + Noise, PMT=18 Photon Lib., PMT=18
aCtivationS 100_ _ . . Cnﬂ
* Parametrizes signals (XYZ coordinates) as
continuous functions via neural networks, train to

-100

map to average photon yield at a PD

* Reproduces an acceptance map with higher accuracy .«
than simulated photon library approach “

y [cm]

» More scalable (time and computationally) than original ™" = & o S & e BRI T T
photon library, also differentiable and able to be 2 el
calibrated

Analytic “toy” representation ‘I,toy(x) _ max(ae—kr(x)/r(x)Q 1)
: C C of photon library: o » =)
* Performs voxel-wise training on original photon

”brary V|S|b|||ty —— Stat. Err.
: : 57 —— Toy
 Can be used for flash-matching and calibrated to R 6o  Toy+Noise
data with track-wise loss function: minimize negative 8 Toy+Noise
log Poisson likelihood: =4 (Ref: Toy)
o
27 Vo
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https://arxiv.org/abs/2211.01505

Order of a
convolution on
sparse tensor is not
sequential

Sparse Tensor Networks

Note*: We have
sparse submanifold
convolutions

Dense Tensor Sparse Tensor
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Submanifold Convolutions

* Convolution output is counted when kernel center covers an input site
» Better suited for irregular sparse data

 Submanifold convolutions help take care of the “submanifold expansion problem”

Figure 1: Example of “submanifold” dilation. Left: Original curve. Middle: Result of applying
a regular 3 x 3 convolution with weights 1/9. Right: Result of applying the same convolution
again. The example shows that regular convolutions substantially reduce the sparsity of the

feature maps.

Figure 1: Submanifold expansion [Source: https://arxiv.org/abs/1706.01307’
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CNN Network Architecture: U-Net

Qc Qr
+ Started with NVIDIA imensions =
MinkowskiEngine’s default U-Net ~ { @ @ j cimensions =3

* Library for sparse tensors input
channels = x3 X32

kernel = 3x3xC ConvTranspose
Batch Norm (8) . x24

 U-Net: a CNN with an encoding
and decoding portion

* |nput and output are “same size”

* Here, we have N voxels as input i Skip Connection
with 3 features (ADC per wire x8 ReLU
plane) Convolution Batch Norm (16)

* OUtpUt IS N voxels with 32 features Batch Norm (16) ConvTranspose

at each voxel

RelLU S
* One “fudge factor” calculated per x32

e x16

* Skip connections via concatenation Convolution
« Concatenate sparse tensors along SFUE MOl (2
feature dimension; this uses info ReLU

from previous feature maps to e.g.
preserve spatial info X392 x32
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CNN Network Architecture: LArMatch UResNet

* Also a U-Net that uses MinkowskiEngine, but has residual layers

Wire
Signal
Images

/,
/
\

\ /

[ )
\ /

\
/

2D U-NET
CNN
(shared
weights)

/

2D
feature

image

A\
!

/

For all 3D-consistent
wire intersections:

combine
(concat.)

wire plane
feature
tors o*
\vec % 4 J

O&..

Embedding

feature space
for candidate
3D points

Multiple
Output
MLPs

{]

True or
False 3D point

Particle Label

Keypoint Label

i CNN: convolutional neural network

. U-NET: a CNN architecture for making pixel-wise outputs |

E MLP: multi-layer perceptron

Outputs used for
—» downstream
3D reconstruction
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