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Jiangmen Underground Neutrino Observation (JUNO)

e JUNO is a medium baseline (53 km) reactor neutrino experiment, with 20 kton liquid
scintillator(LS) in a spherical vessel surrounded by ~17k 20" + ~25k 3" PMTs
e Located in Guangdong Province, South of China. It is located 650 m underground.

17650 m rock.
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JUNO experiment
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JUNO Physics

The primary goal: determination of neutrino mass ordering(NMO).
« Pure source of electron anti-neutrino of ~1-10 MeV from reactor
Measure neutrino oscillation parameters to sub-percent level

Wide range of measurable neutrino energies + sources!SuperNova, Solar, Geo., Atm., etc.

6 years of data taking —— No oscillations

Only solar term
—— Normal ordering
—— Inverted ordering

atomospheric:

>
()
=
—
[
]
Q
(%]
|
c
]
>
Ll

9 2.4x107 eV?
lsm“ 20,3 atomospheric:

2.4x107 ev?
solar: 7.5><10'5 eV2

Es, (MeV)

Py =1 —sin? 2013 (cos? 012 sin? A31 + sin? 012 sin? A3z) — cos# 013 sin? 2012 sin? A2

4



Why Atmospheric Neutrinos in JUNO?

Atmospheric neutrinos provide independent sensitivity to NMO via matter effects.

Combing reactor and atmospheric neutrino oscillations has the potential to maximize
JUNOQ's total sensitivity

. reactor anti-neutrinos at low energies
. atmospheric neutrinos at high energies(GeV level)

10
E,in GeV



Challenge: LS detector for v

For Atmospheric neutrinos study:

Matter effects on oscillations are dependent on zenith angle since it is directly
related to the oscillation baseline length.

Neutrino directionality (cos@) is mandatory to the atmospheric neutrino.

For LS detector

Scintillation light is isotropic, Cherenkov light is only a few percent: no direct
directional information.
Atmospheric neutrino oscillation measurements in LS detectors have never been

reported before



Methodology for the directionality reconstruction

« The scintillation light received by a PMT is the superposition of light from many
points on particle tracks inside the detector.

« The track depicts distinct shapes of nPE(t) for PMTs at different angles, which then
reflected in the PMT waveforms.
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Methodology for the directionality reconstruction

Using waveform analysis and machine learning techniques.

» Features are extracted from waveforms to keep only the useful information relevant to

reconstructions.

>>PMT feature also used for direction/energy/flavor/vertex etc. flavor talk see Wing's talk.

Max charge Tasks:
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Machine Learning Models

Three different approaches are developed to deal with the PMT features :

PIar_Iar _ Planar model
projection (EfficientNetV2)
PMT features Spherical Spherical
. - model
projection (DeepSphere)
. 3D Point
Point clouds clouoc:? based
model

(PointNet++)




Planar Model: EfficientNetV2

« EfficientNetV2: CNN model adapted for spherical data by projecting it onto a 2D grid.

« PMTs are seen as pixels, with each feature projected from the sphere to the planar surface
E.qg. projected total charge and FHT to Bpyr — dpur plane

« Advantages: High performance, shorter training time.
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Spherical CNN: DeepSphere

Graph-CNN: developed for processing spherical
data originally developed for cosmology studies
Advantages: Maintains rotation co-variance,
avoid distortions caused by projection to a

planar surface

Input channels

102.603

Use Healpix sampling to define vertices
Equally divide the sphere into 12 parts
Further divide each part into Nside parts
(Nside = 2n)

If more than one PMTs are in one pixel, info
is merged
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3D point-cloud: PointNet++

» Directly taking 3D point clouds (N(PMT ) x [x, vy, z, features...]) as inputs
« Advantages: Captures both global and local features.

» Detector signal more resemble point clouds

e Minimise information loss during projection

Hierarchical point set feature learning

Classification

sampling & pointnet sampling & pointnet

grouping grouping

class scores

\ )\ )
S Y
set abstraction set abstraction —
pointnet fully connected layers
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Performance of directionality

a: Angle between the true and reconstructed

directional vector.

 The range of a is 0 to 180°, 68% quantile
Is used to quantify the performance of a

Reconstructed 6 - True 6

« Distribution in E, bins can be well
described by Gaussian.

e 0g from Gaussian fit is defined as the

resolution.
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Performance of directionality

Used JUNO Monte-Carlo sample: Data sample: 135k v /v", 57k v, /v", Charged-Current
events, 80% training

First demonstration in reconstructing va,, direction in a LS detector with MC

The performance gets better as the energy increases for both neutrino flavors

A consistent trend is observed for the three different models

9 EfficientNet-V2 & EfficientNet-v2
¥ DeepSphere ¥ DeepSphere
# PointNet++ # PointNet++
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Performance of directionality: a
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Performance of directionality
e LS detector see hadrons better than a WC detector
thanks to its lower threshold.

"""" \ « Both lepton and hadron informations are used in the
. directionality reconstruction.
,, 7y, Moo « An advantage for an LS detector with this method for
““““ *\g atmospheric neutrino oscillation measurements.
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Summary

e Inthis talk, we presented waveform analysis and machine learning
methods for the reconstruction of atmospheric neutrino’s directionality.

e The reliability of the results was tested by using different machine
learning models.

o  First successful directional reconstruction of atmospheric neutrino is done
in a large-volume LS detector, greatly expanding the physics applications
of such detectors

 Impact: Enhances JUNO’s capability in NMO measurements, providing

critical data for future studies.
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Thank you for your

attention!
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BACKUP
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Performance of directionality : v, /D,
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Performance of directionality : v, /D,
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Performance of directionality:v¢ /D, v /Dy

The two-dimensional distribution of directionality reconstruction performance
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Topological Reconstruction (directi

S G- . photosensors at Fi
P

Idea: Reconstruct the photon emission probability P \(\()

“ \ax k

distribution based on the detected hit charges and iy

times
)\

Includes: full simulation with electronics effects + waveform
reconstruction

23



