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Overview
A Brief Introduction to Uncertainty Quantification

Reconstruction Study I: 

In Which Energy Regression Uncertainty is Driven by Modelling Error

Reconstruction Study II:

In Which Shower Fragment Association is Improved by Uncertainty 
Propagation
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UQ & YOU



D. Douglas

Sequential Models and Making Mistakes
D.H. Koh: 

“We separate 
our model into a 
chain with 
distinct tasks 
and well defined 
intermediate 
representations 
so we can 
recognize cases 
more 
susceptible to 
error”

F. Drielsma et al.
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Types of Uncertainty in Modelling
● Aleatoric/Statistical – arise 

from peculiarities of an 
individual input

○ Can be homoscedastic or 
heteroscedastic

○ Irreducible!
● Epistemic/Systematic - arise from the 

model itself – is the model capable of 
expressing the underlying process (do 
the perfect weights correspond to the 
“true” model)?  How susceptible is the 
model to less-than-ideal training (Do 
the actual weights come close the the 
perfect weights)?

f x

x f

5



D. Douglas

Uncertainty-Enabled Models
This is really about moving from 
predicting scalar values from scalar 
inputs to predicting distributions 
from distributions.  

There is a menagerie of 
methodologies available to 
achieve this, though some 
techniques are better suited for 
some tasks than others.

Here, I’ll discuss a few simple ones

A Survey of Uncertainty in Deep 
Neural Networks, J. Gawlikowski 

et al.
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Probabilistic Predictions
The simplest method to implement is 
sometimes enough

Make your model predict parameters of a 
distribution and use a likelihood-based loss.

Hint: if you’re using MSE, you’re already 
maximizing a likelihood with a 
homoscedastic model! predicted
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Stable Distribution Propagation

Uncertainty Quantification 
via Stable Distribution 

Propagation, F. Peterson, 
A. Mishra, et al.

distprop githubA scalable way to propagate 
input uncertainties with large 
models – works for Gaussian & 
Cauchy PDFs

A. Mishra F. Peterson
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https://arxiv.org/abs/2402.08324
https://arxiv.org/abs/2402.08324
https://arxiv.org/abs/2402.08324
https://arxiv.org/abs/2402.08324
https://github.com/Felix-Petersen/distprop


D. Douglas

Model Uncertainty
Consider that the family of functions 
defined by our model may be quite far 
away from the “true” model

Model error arises from inability for 
chosen model to express the “true” model 
(approximation error)

More model error arises from error in 
finding the optimal model (estimation 
error).  This stems from algorithmic 
errors, sampling error within training data, 
etc.

Optimal model

Estimated 
model

“True” model

Space of 
allowed 
functions by 
model structure
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Ensembling Methods
To quantify estimation error, we can train the same 
model with independently estimated weights, and use 
the distribution of predictions produced by these 
models.

For a regression problem, we can simply use the mean 
and variance of the model mean predictions.

For a probabilistic network, the ensemble inference 
can be treated as a gaussian mixture model.
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Dropout as a Bayesian Approximation: 
Representing Model Uncertainty in Deep Learning, 
Y. Gal, Z. Ghahramani

Monte Carlo Dropout is a 
method for stochastically 
changing your model in 
order to approximate a 
posterior distribution of a 
model’s prediction

MC Dropout: the Lazy Person’s Ensemble
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https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1506.02142
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UQ Tools!
Public – and hackable! – tools are available 
in Uncertainty Toolbox

Contains useful plots, metrics, and 
methods for doing UQ

Adversarial mis-calibration assessment, 
re-calibration and many other tools

Uncertainty 
Toolbox - github

W. Neiswanger
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http://github.com/uncertainty-toolbox/uncertainty-toolbox
http://github.com/uncertainty-toolbox/uncertainty-toolbox
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Case Study I:
Point Cloud Image 

Shower Energy Regression
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Convolution

Whole Image Primary Energy Regression

meanE

Residual Block

Dropout Block

NLL

8 pooling 
steps

μ, σ

σE

UpSample

DownSample

Simple ResNet 
encoder with dropout 
layers

Deterministic (no 
sigma output) and 
Probabilistic versions

Global Avg Pool

Linear
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Training Set - DUNE ND LArTPC Simulation
For this task, we use electron and gamma-initiated 
showers (0-1 GeV) simulated in a DUNE ND-LAr-like 
detector
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A Minimally-viable Aleatoric/Input UQ Problem
Question: Can a model without 
explicit uncertainty information 
learn the underlying uncertainty 
distribution from variance seen in 
training input?

This helps to understand a 
model’s sensitivity to 
input-by-input uncertainty vs. the 
systematic error of the model

UQ-enabled 
model

Blinded 
model

Input sampling

Calibrated output 
distribution

?
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Adding Artificial Input Noise
Now, add a new feature for every existing 
feature which is 2-5% of the feature’s true 
value.

The true value is then smeared by a gaussian 
with this width, giving a noisy feature and a 
calibrated input uncertainty

add 
noise
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Performance
Both models perform 
with similar accuracy

UQ-enabled model is 
slightly less accurate, 
but produces better 
uncertainty estimates

Probabilistic outputProbabilistic input

Deterministic input Probabilistic output

MCA - 0.034

MAE - 14.795

NLL - 4.206

MCA - 0.092

MAE - 13.053

NLL - 4.129
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Case Study II:
Shower Fragment Association
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Track Cluster Association Task
Data for this task is taken from an SSI 
challenge 

Inputs are nodes defined from disconnected 
fragments of showers in LArTPC simulation

There are multiple showers within each image

Each node is labelled by whether it is 
upstream or downstream

Edges are labelled by the shower association

Shower fragments
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Data for this task is taken from an SSI 
challenge 

Inputs are nodes defined from disconnected 
fragments of showers in LArTPC simulation

There are multiple showers within each image

Each node is labelled by whether it is 
upstream or downstream

Edges are labelled by the shower association

Track Cluster Association Task
Primary fragment
Secondary fragment
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Data for this task is taken from an SSI 
challenge 

Inputs are nodes defined from disconnected 
fragments of showers in LArTPC simulation

There are multiple showers within each image

Each node is labelled by whether it is 
upstream or downstream

Edges are labelled by the shower association

Track Cluster Association Task
Complete showers
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Network Architecture
Simple EdgeConv network with two 
MLP heads for node and edge 
classification

Node Classification for 
upstream/downstream identification

Edge Classification for association 
of disconnected fragments

Full graph partitioning isn’t 
considered in this task (yet!), only 
edge-by-edge classification

node 
inference

edge 
inference

Node message passing

Edge message passing

Linear Head
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Loss – Training without Noise
Reaches about 95% 
accuracy at both edge 
and node classification 
tasks
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Performance – Uncertainty-Enabled and Blinded
Both models are exceptionally 
well-calibrated out of the box

The uncertainty-aware model 
produces ~3% more accurate 
inferences

blind

Uncertainty-aware

Probabilistic outputProbabilistic input

Deterministic input Probabilistic output
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Ensemble Metrics
See a consistent improvement across a (relatively small) ensemble of models!

Loss Accuracy
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Performance as a Function of Noise Magnitude
The 
uncertainty-aware 
model performs 
consistently better 
at edge 
classification 
(~3-5% more 
accurate) across a 
wide range of input 
uncertainty!

x

Accuracy BCE
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Conclusions
● A short survey of two very different 

reconstruction tasks in LArTPC 
reconstruction and how to quantify 
per-inference uncertainty

● Some tasks are much less sensitive to input 
uncertainty, instead they are dominated by 
model error

○ This will inform a strategy towards full end-to-end 
propagation in a large model like SPINE

● Uncertainty Quantification is important!  An 
“accurate” deterministic model may inspire 
overconfidence and blindness to anomalous 
inferences!

Be confident!

Not too confident…
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BACKUP
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Feature Definitions
Node features:

● Fragment voxel centroid (3)
● Fragment voxel covariance matrix (9)
● Fragment voxel principal axis (3)
● Number of voxels in the fragment (1)
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Feature Definitions
Edge features:

● Closest points of approach (6)
● Displacement vector between closest 

points of approach (3)
● Outer product of displacement (9)
● Norm of displacement (1)
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80% Dropout Feature Distribution
Node Features

Not quite gaussian

Characterize distribution width as a 
function of dropout efficiency
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80% Dropout Feature Distribution
Node Features

Not quite gaussian

Characterize distribution width as a 
function of dropout efficiency
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80% Dropout Feature Distribution
Node Features

Not quite gaussian

Characterize distribution width as a 
function of dropout efficiency
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80% Dropout Feature Distribution
Node Features

Not quite gaussian

Characterize distribution width as a 
function of dropout efficiency
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Node Parameter Uncertainty Scaling
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Some features have as much as 25% 
uncertainty with high dropout, but most 
are in the <10% region

For the spatial parameters, fractional 
uncertainty throws are not the best 
approach


