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RWIN collaboration: Proposal

DARWIN: 40 tonne( or XLZD: 60 tonne()

~ 200 Inember-s" .
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Underground TPCs: Events
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e Traditionally use high level analysis observables: ¢S1, ¢S2



Traditional likelihood-based analysis
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Does this likelihood yield an optimal test statistic?



Simulation based inference
(SBI)



Simulation-Based Inference (in a nutshell)

Simulation-based inference is a statistical technique that allows us to
make inferences about a population or process based on simulated
data.
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Benefits of SBI

e Can handle complex models with intractable likelihoods.

e Use deep neural nets to learn underlying features of simulated
data/summary stats.

e Once a simulator has been established, possible to include
arbitrarily complicated simulations into analysis: prompt
readouts — high level summary stats.

e Need no special treatment of nuisance parameters.

e Can in principle simulate/calibrate any detector effects and learn
them directly.



Underground TPCs: Two types of events
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e Nuclear Recoil (NR) — WIMPs
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e Nuclear Recoil (NR) — WIMPs
e (Dominant) Background — Electron Recoil (ER).

e Distance and ratio between S1/S2 peaks — NR vs. ER.



Training data: Simulations

Event event output S1, S2 pulses and PMT deposits (4-fold coincidence,
200 ns, 200 V/cm):
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Training data: Simulations

Event event output S1, S2 pulses and PMT deposits (4-fold coincidence,
200 ns, 200 V/cm):

—> x = [S1WaveformTotal, S2WaveformTotal, S2Pattern |

ER/NR. Generate data representatively € [1 — 100] keV.



Proposed analysis pipeline:
The neural anomaly detector



ised anomaly detection: Full pipeline
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e (Top) Variational auto-encoder: Train on ER only

e (Bottom) Fully connected MLP classifier: ER vs
NR



Semi-unsupervised anomaly detection: Classifier
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e (Bottom) Fully connected NN classifier: ER vs NR
e Classifies two interaction types: ER/NR

e New insights from Lopez-Fogliani et.al
2406.10372: BDT’s MLP and transformers all

basically just as good...! 10



Classification: ER vs. NR Results

e Train on ~ 40000 events. Take testing sub-sample of ~ 40%
e Check performance — ROC:
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e Takeaway = 98.03% accuracy. (Recall = 98.07%, Precision =
96.39%) 11



anomaly detection: VAE
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e (Top) Variational auto-encoder: Train on ER only

e Learns low dimensional representation of events =
energy.
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Spectral information is encoded in the VAE
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e Even though trained on just ER: Auto-encoder can learn
underlying spectral information of all events!
e Energy reconstruction using neural posterior estimation

(Preliminary results promising - backup slides.)
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Semi-unsupervised anomaly detection: Anomaly function
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e Anomaly function TS constructed as sum of
outputs
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Semi-unsupervised anomaly detection: New distance met-

ric

e New ‘anomaly function’ that utilizes pre-trained supervised NN
classifier:
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Semi-unsupervised anomaly detection: New distance met-

ric

e New ‘anomaly function’ that utilizes pre-trained supervised NN
classifier:

TS = -ELBO + RHp ,

where

e Hp = _% Zi\io log (1 —p(x;)) (Binary cross-sentropy.)

e R scales the contribution of the cross-entropy term — makes it
more/less supervised.

Deriving anomaly scores is a game...
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Pseudo-data sets

e Anomaly Detection: Once trained, run data the network has
never seen before through trained network. = Extract fy (null

pdf).
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Dimensionally reduced two
sample hypothesis test




Dimensionally reduced analysis

e = 1D analysis in T'S space: Accept/reject
Ho : X ~ P (x| No signal).

N
L(TS[Ho) e P [ (Bfo (T'S:))
i=1
e Unbinned.
e Parametrically independent on WIMP model.

e No auxiliary terms required assuming simulations have suitably
descriptive coverage.

e Can be augmented with more fundamental data representation or
calibration. (Current work!)
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Compare with likelihood approach

Background and signal pdfs/u; Nuisance params.
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Compare with likelihood approach

Background and signal pdfs/u; Nuisance params.

—_——
log ;C(CSl, cS2 | 0sI, 0) = IOg ‘Cscience(CSl-, cS2 ‘ O8I, 0) + IOg Eancillal’y(a)

e Exact anomaly detection analogue (model indep.):

L (cS1,cS2 | Hy) = L(eS1,¢S2 | og1 = 0)
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median sensitivity from toys
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Ho rejection in presence of WIMP signal injection
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Current and future work

Calibration/simulation mismatch:

e Adversarial DA

e Useful conversations with Omar Alterkait (equivariant NN talk)

More fundamental data:

e Time domain in PMT channels: Transformers? Other?
Extremely high D

Implementation and inclusion of energy /position reconstruction and
neutron veto into full pipeline.
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Thank you!
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Interplay of unsupervised and supervised components
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Figure 8: Optimisati of the hyper R that controls the contribution of the supervised classifier in the de-

termination of the anomaly function T'S as shown in Eqn. 5. The p =value to reject Ho is given as a function of R
for three benchmark WIMP sensitivity studies at fixed exposure of 200 ty and cross section og; = 6.5 x 10748 cm? for
my = 30,50 and 100 GeV. We have checked that the scattering cross-section rescales the median sensitivity probability
but does not affect the shape of the above curves, and therefore the choice of R and cut value are insensitive to it. An
optimal combination of R value is obtained when the probability to accept Ho is smallest (most sensitivity). For this
study we adopt an R value of 2.5 x 10%.
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Backgrounds
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e Trigger N4T200

e Single scatter selection (Neutrons)

e CES 2-10 keV: For now cheating a bit...
e Todo: Accidentals
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Classification: ER vs. NR Results

e Train on ~ 40000 events. Take testing sub-sample of ~ 40%
e Check performance — ROC:
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e Takeaway = 98.03% accuracy. (Recall = 98.07%, Precision =
96.39%) %



Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.
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Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.

e Goal: Learn low dimensional representation (encoding) of data
via dimensional reduction.
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Generative Deep Learning: The Variational Auto-Encoder

Variety of studies in HEP use these for anomaly detection tasks.

Goal: Learn low dimensional representation (encoding) of data
via dimensional reduction.

Latent space (bottleneck) layer is a bunch of normal distributions
parameterized by some p and o.

Our goal: Learn the latent representation of the background
(ER) events. = Spectral information (E).
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Generative validation

e Posterior predictive check
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Energy reconstruction SBI with masked autoregressive

flows

Detector model

1 Neural posterior density estimation: Estimate posterior on Er from data.

simulated data neural density estimator
x = [0.6915368, 6.48629665, 5.176619, ...,
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Follow up work: E reconstruction

Neural posterior density estimation (Masked auto-regressive flows)
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Variational-Auto-Encoder: Training

e Use same data as with supervised classification.
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Variational-Auto-Encoder: Training

e Use same data as with supervised classification.
e Train VAE on just* ER data.

e Train by maximising evidence lower bound (ELBO):
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Variational-Auto-Encoder: Training

e Use same data as with supervised classification.
e Train VAE on just* ER data.

e Train by maximising evidence lower bound (ELBO):

p(z, z)
lo pszLBO:Ezz{lo }
g p(x) aGzle) (108 o

= Ellogp(z|2)] — BDkL(q(z]2)||p(2))
z = Input
z = Latent vector

[ = Regularization parameter

e Loss = —ELBO
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