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Underground TPCs: Events

• Traditionally use high level analysis observables: cS1, cS2
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Traditional likelihood-based analysis

logL(cS1, cS2 |σSI,θ) = logLscience(cS1, cS2 | σSI,θ)+logLancillary(θ) ,

• Parametrically model

dependent

• Derived from 2D

templates

• Relies on high-level

’summary statistics’

cS1,cS2:

⇒ E = g(cS1, cS2)

Does this likelihood yield an optimal test statistic?
3
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Simulation based inference

(SBI)



Simulation-Based Inference (in a nutshell)

Simulation-based inference is a statistical technique that allows us to

make inferences about a population or process based on simulated

data.
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Benefits of SBI

• Can handle complex models with intractable likelihoods.

• Use deep neural nets to learn underlying features of simulated

data/summary stats.

• Once a simulator has been established, possible to include

arbitrarily complicated simulations into analysis: prompt

readouts → high level summary stats.

• Need no special treatment of nuisance parameters.

• Can in principle simulate/calibrate any detector effects and learn

them directly.
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Underground TPCs: Two types of events

• Nuclear Recoil (NR) → WIMPs

• (Dominant) Background → Electron Recoil (ER).

• Distance and ratio between S1/S2 peaks → NR vs. ER.
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Training data: Simulations

Event event output S1, S2 pulses and PMT deposits (4-fold coincidence,

200 ns, 200 V/cm):

⇒ x = [S1WaveformTotal, S2WaveformTotal, S2Pattern ]

ER/NR. Generate data representatively ∈ [1− 100] keV.
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Proposed analysis pipeline:

The neural anomaly detector



Semi-unsupervised anomaly detection: Full pipeline

• (Top) Variational auto-encoder: Train on ER only

• (Bottom) Fully connected MLP classifier: ER vs

NR
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Semi-unsupervised anomaly detection: Classifier

• (Bottom) Fully connected NN classifier: ER vs NR

• Classifies two interaction types: ER/NR

• New insights from Lopez-Fogliani et.al

2406.10372: BDT’s MLP and transformers all

basically just as good...!
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Classification: ER vs. NR Results

• Train on ∼ 40000 events. Take testing sub-sample of ∼ 40%

• Check performance → ROC:
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• Takeaway ⇒ 98.03% accuracy. (Recall = 98.07%, Precision =

96.39%) 11



Semi-unsupervised anomaly detection: VAE

• (Top) Variational auto-encoder: Train on ER only

• Learns low dimensional representation of events ⇒
energy.
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Spectral information is encoded in the VAE
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• Even though trained on just ER: Auto-encoder can learn

underlying spectral information of all events!

• Energy reconstruction using neural posterior estimation

(Preliminary results promising - backup slides.)
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Semi-unsupervised anomaly detection: Anomaly function

• Anomaly function TS constructed as sum of

outputs
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Semi-unsupervised anomaly detection: New distance met-

ric

• New ‘anomaly function’ that utilizes pre-trained supervised NN

classifier:

TS = −ELBO +RHB ,

where

• HB = − 1
N

∑N
i=0 log (1− p (xi)) (Binary cross-sentropy.)

• R scales the contribution of the cross-entropy term → makes it

more/less supervised.

Deriving anomaly scores is a game...
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Pseudo-data sets

• Anomaly Detection: Once trained, run data the network has

never seen before through trained network. ⇒ Extract f0 (null

pdf).
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Dimensionally reduced two

sample hypothesis test



Dimensionally reduced analysis

• ⇒ 1D analysis in TS space: Accept/reject

H0 : X ∼ P (x | No signal).

L(TS|H0) ∝ e−B
N∏
i=1

(Bf0 (TSi))

• Unbinned.

• Parametrically independent on WIMP model.

• No auxiliary terms required assuming simulations have suitably

descriptive coverage.

• Can be augmented with more fundamental data representation or

calibration. (Current work!)
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Compare with likelihood approach

logL(cS1, cS2 |σSI,θ) =

Background and signal pdfs/µi︷ ︸︸ ︷
logLscience(cS1, cS2 | σSI,θ) +

Nuisance params.︷ ︸︸ ︷
logLancillary(θ)

• Exact anomaly detection analogue (model indep.):

L (cS1, cS2 | H0) ≡ L (cS1, cS2 | σSI = 0)
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DM median sensitivity from toys
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H0 rejection in presence of WIMP signal injection
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H0 rejection in presence of WIMP signal injection
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Current and future work

Calibration/simulation mismatch:

• Adversarial DA

• Useful conversations with Omar Alterkait (equivariant NN talk)

More fundamental data:

• Time domain in PMT channels: Transformers? Other?

Extremely high D

Implementation and inclusion of energy/position reconstruction and

neutron veto into full pipeline.
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Thank you!



Backup Slides



Interplay of unsupervised and supervised components
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Backgrounds
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• FV (baseline) 31.5t

• Trigger N4T200

• Single scatter selection (Neutrons)

• CES 2-10 keV: For now cheating a bit...

• Todo: Accidentals
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Classification: ER vs. NR Results

• Train on ∼ 40000 events. Take testing sub-sample of ∼ 40%

• Check performance → ROC:
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• Takeaway ⇒ 98.03% accuracy. (Recall = 98.07%, Precision =

96.39%) 25



Generative Deep Learning: The Variational Auto-Encoder

• Variety of studies in HEP use these for anomaly detection tasks.

• Goal: Learn low dimensional representation (encoding) of data

via dimensional reduction.

• Latent space (bottleneck) layer is a bunch of normal distributions

parameterized by some µ and σ.

• Our goal: Learn the latent representation of the background

(ER) events. ⇒ Spectral information (E).
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Generative validation

• Posterior predictive check
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Energy reconstruction SBI with masked autoregressive

flows

Detector model

(MAF)

 

 

 

 

Neural posterior density estimation: Estimate posterior on       from data.

Extract WALDO test statistic 
using amortized posterior                                            

prediction with exact 
coverage

C.I. with correct coverage.

τWALDO (D;θ0) = (E[θ | D]− θ0)
T V[θ | D]−1 (E[θ | D]− θ0)
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Follow up work: E reconstruction

Neural posterior density estimation (Masked auto-regressive flows)
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Variational-Auto-Encoder: Training

• Use same data as with supervised classification.

• Train VAE on just* ER data.

• Train by maximising evidence lower bound (ELBO):

log p(x) ≥ ELBO = Eq(z|x)

[
log

p(x, z)

q(z | x)

]
= E[log p(x|z)]− βDKL(q(z|x)||p(z))

x = Input

z = Latent vector

β = Regularization parameter

• Loss ≡ −ELBO
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tSNE of latent space
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