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INTRODUCTION

SUPER-K WCTE IWCD HYPER-K

Cherenkov detectors are crucial in neutrino physics. 
 
Well understood technology, inheriting software & analysis tools from the past. 
 
Moving towards the future we want to find ways to benefit from recent developments in AI/ML.
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QUICK RECAP ON CHERENKOV PHYSICS

Particles traveling faster than speed of light in the medium produce Cherenkov light.

Cherenkov Threshold

 
 
Ring timing                   ~vertex position. 
Ring thickness               ~track length. 
Ring orientation            ~track direction. 
Ring shape / density     ~particle type.      

Emission Angle (usually ~42  in water)∘

Track Reconstruction In Medium/Detector Effects
Examples: 
Attenuation                     Sensor Heterogeneity 
Reflections                      Hadron/Lepton SI 
Detector Anisotropies
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CHALLENGES

DETECTOR S IMUL ATION

CALIBRATION(S)

RECONSTRUCTION PHYSICS 
ANALYSIS

1

2 3 4

Collection of stand-alone scripts

GEANT4-based simulation Likelihood-based fitting

STANDARD ANALYSIS  WORKFLOW

Often Likelihood-based using 
'frozen' reconstruction info
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PIPEL INE FRAGMENTATION 

Running experiments involves developing & maintaining isolated pieces of code, with different 
dependencies, different programing languages...

EFFORT DUPLICATION
Different runs, involve re-running calibrations, simulations & reconstruction. Time consuming & 
computationally heavy. Inefficient use of human & computing resources.

CORREL ATION BL INDNES
Usual practice is to tune one part, freeze it, tune the next, etc. But what is the parts are co-
dependent?

Often Likelihood-based using 
'frozen' reconstruction info
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AN ALTERNATIVE APPROACH

Detector  Hardware     Data      

PHYSICS IS  A 'FORWARD'  PROCESS

Physics      Detector Simulation & Reconstruction      Data      

ANALYSIS  IS  A 'BACKWARD'  PROCESS

Physics      

Currently multi-step  & non-differentiable
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Detector  Hardware     Data      

PHYSICS IS  A 'FORWARD'  PROCESS

Physics      Detector Simulation & Reconstruction      Data      

ANALYSIS  IS  A 'BACKWARD'  PROCESS

Physics      

Currently multi-step  & non-differentiable

What could be better?

USE A DIFFERENTIABLE PHYSICS MODEL

Physics      Data      

We can try to learn this ~implicitly   (see  J.Xia's Talk!) 
Or (in this talk) we can try to do this analytically (i.e. enforcing our 'knowledge' explicitly.) 
Or we can combine both approaches.

f( )⃗θ

⃗θt = ⃗θt−1 − λ∇ ⃗θ ℒ(x, ⃗θ)

unified & differentiable

https://indico.phys.ethz.ch/event/113/contributions/826/
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IMPLICITLY VS ANALYTICAL

WHAT IS  EXACTLY       ?  f( )⃗θ

Implicit: f( ) is a NN. 
 
Generally, NN will be a black-box transformation from physics-space to data-space (with pros 
& cons). E.g. If you learn f( ) you can perfectly match the performance of your detector, but 
you can't access intermediate information.

⃗θ

⃗θ
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Analytic: f( ) is a full forward model implementation based on an analytical description of all 
the processes. 

You can optimize and inspect all of the model parameters. You run it on calibration data to 
tune the simulation. You run it on physics data for reconstruction. It is very easy to propagate 
systematics.

⃗θ
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A TOY PROBLEM USING CHERENKOV PHYSICS

Our differentiable physics model needs to consider the following elements:

DETECTOR GEOMETRY1

INIT IAL  CONDITIONS2

PARTICLE PROPAGATION3

PHOTON PROPAGATION4

DETECTOR RESPONSE5

(Particle(s) Kinematics & Positions)
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CHOOSING A FRAMEWORK

What simplifications can we do to isolate the 'core' problems of interest?

Priority is to code up differentiable photon propagation & detector response.

What framework should we use?

We want something with 1) built-in autodiff  2) ~geometry functionality.

https://github.com/taichi-dev/taichi

Let's look at Industry, what do they use in ray-tracing applications?

https://github.com/taichi-dev/taichi
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DETECTOR GEOMETRY1

Let's assume a cubic detector made up of NxNxN voxels.  
(nominally N=128)

Let's assume there are two types of voxels: 
1)  Detector Voxels                   2) Sensor Voxels

All voxels in the surfaceAll inner voxels

SIMUL ATION PROCEDURE -  I
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S IMUL ATION PROCEDURE -  I I

2

Let's assume 1 particle, starting in any inner voxel with 
any inner direction. 
 
Let's assume the particle has infinitesimal length (no 
particle propagation). 
 
6 Degrees of freedom: 
(position ,  and direction )⃗x ⃗v

INIT IAL  CONDITIONS & PARTICLE  PROPAGATION3
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Uniformly sample photons in a cone around track 
direction (~Cherenkov like emission). Assume fixed angle 
(but this could be additional degree of freedom). 
 
Propagate  photons (assumptions discussed later) 
until a photosensor (surface) is reached.  
Step-by-step voxel propagation thanks to Taichi 
capabilities for sparse computation. 
 

 is an additional degree of freedom.

Nphot

Nphot

4 PHOTON PROPAGATION

S IMUL ATION PROCEDURE -  I I I
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Count how many photons arrive to each photosensor.

Assume that each photon contribute  counts. 
With L being the photon path length and  the 
attenuation length, which is an additional degree of 
freedom.

e−L/λatt

λatt

5 DETECTOR RESPONSE

S IMUL ATION PROCEDURE -  IV
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GENERATING 'DATA'

Select true parameters: 

( , ,  and      8 params in total)⃗x ⃗v λatt Nphot

Create one event display by running the forward.

1

2
Data  Retain only the number of photons in every sensor voxel.≡

Track

'Data'
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OPTIMIZATION

Select reco parameters: 

( , , N and      8 params in total)⃗x ⃗v Nphot

Calculate photons final position by running forward for the 8 reco parameters

1

2

Calculate loss.3

Use gradients to update the reco parameters.4

Repeat until convergence:
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RESULTS

We can simultaneously minimize calibration-like quantities (e.g. the light attenuation constant) 
and reconstruction-like quantities (track parameters) via gradient descent.
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L IMITATIONS

Major challenge: In the exploration so far we have not included (or have bypassed) dealing with 
processes that are inherently stochastic (e.g. scattering, reflections...). 
 
Taichi does not yet support auto differentiation for sampling operations.

Let's start from scratch using 

Current results support viability of further exploring differentiable physics models as a 
future solution to integrate calibration & reconstruction in a single framework.
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LET 'S  USE 'S IMPLE-S IM'

Not truly from scratch...

Developed non-differentiable simple Cherenkov simulator for other projects in CIDER-ML using 
numpy. (see  J.Xia's Talk!)

Let's translate numpy to JAX, and use it for our purposes.

Example of a diffuse event (isotropic 
light with common origin)

Example of a Cherenkov-like event

https://indico.phys.ethz.ch/event/113/contributions/826/
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RESULTS
Select true parameters:  ( , , )⃗x ⃗v θCH

' TRUE'  EVENT
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RESULTS
Select true parameters:  ( , , )⃗x ⃗v θCH

' TRUE'  EVENT

START AT RANDOM POINT
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RESULTS
Select true parameters:  ( , , )⃗x ⃗v θCH

' TRUE'  EVENT

START AT RANDOM POINT INFERED EVENT

Optimize
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NEXT STEPS & CONCLUSIONS 

We have implemented two independent differentiable models of a toy Cherenkov detector. 
 
 
Next step is to add up stochastic processes and optimize related physics parameters 
(scattering, reflections).

Are we ready to build end-to-end analytical models? No. 
But do we want to keep working in the same way in the next 20 years?

Walking steps in the direction of alternative solutions can help us to understand their 
limitations & advantages. Differentiable detector simulations have the potential to redefine 
old-existing paradigms in HEP-ex.

https://github.com/CIDeR-ML/simpleCherenkovSim/tree/autodiff_test https://github.com/CIDeR-ML/taichi-cher-sim/tree/main



Back Up
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STANDARD CALIBRATION
SUPER-K CALIBRATION AS AN EXAMPLE arXiv:1307.0162

CHANNEL BY CHANNEL INFORMATION

DETECTOR LEVEL  INFORMATION

https://arxiv.org/pdf/1307.0162
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STANDARD RECONSTRUCTION

SUPER-K RECONSTRUCTION AS AN EXAMPLE developed from MiniBooNE arXiv:0902.2222

• For each particle type option ( ...)  maximize over track params (kinematics).μ, e, π

https://arxiv.org/pdf/0902.2222
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OPTIMIZATION

Select reco parameters: 

( , , N and      8 params in total)⃗x ⃗v Nphot

Calculate photons final position by running forward for the 8 reco parameters

1

2

Calculate loss.3

Example:      

Loss =
N photons

∑
i

distance_to_closest_PMT(pi) × PMT_loss_term

time_distance_to_closest_photonj = abs(time_PMTj − time_closest_photonj)

PMT_loss_term =
fired PMTs

∑
j

time_distance_to_closest_photonj

In the future we plan to have an optimal transport inspired loss using Wasserstein 
distance between predicted & data event.

Run backward & update the reco parameters.4

Repeat until convergence:


