NPML 2024

Neutrino Physics & Machine Learning 2024

Zürich, 28th June 2024

& UTokyo PMU CD3

Advancing Detector Calibration and Event Reconstruction in Water Cherenkov Neutrino Detectors with Analytical Differentiable Simulations

César JESÚS-VALLS & Omar ALTERKAIT

cesar.jesus-valls@ipmu.jp

On behalf of CIDER-ML collaboration

INTRODUCTION

Cherenkov detectors are crucial in neutrino physics.

Well understood technology, inheriting software & analysis tools from the past.

Moving towards the future we want to find ways to benefit from recent developments in AI/ML.

QUICK RECAP ON CHERENKOV PHYSICS

Particles traveling faster than speed of light in the medium produce Cherenkov light. Cherenkov Threshold Emission Angle (usually ~42 in water) [∘]

Ring timing ~vertex position. Ring thickness ~track length. Ring orientation ~track direction. Ring shape / density ~particle type.

Track Reconstruction In Medium/Detector Effects

Examples: Reflections Hadron/Lepton SI Detector Anisotropies

Attenuation Sensor Heterogeneity

CHALLENGES

STANDARD ANALYSIS WORKFLOW

CHALLENGES

STANDARD ANALYSIS WORKFLOW

PIPELINE FRAGMENTATION

Running experiments involves developing & maintaining isolated pieces of code, with different dependencies, different programing languages...

EFFORT DUPLICATION

Different runs, involve re-running calibrations, simulations & reconstruction. Time consuming & computationally heavy. Inefficient use of human & computing resources.

CORRELATION BLINDNES

Usual practice is to tune one part, freeze it, tune the next, etc. But what is the parts are codependent?

AN ALTERNATIVE APPROACH

PHYSICS IS A 'FORWARD' PROCESS

AN ALTERNATIVE APPROACH

PHYSICS IS A 'FORWARD' PROCESS

We can try to learn this ~implicitly (see <u>J.Xia's Talk</u>!)

Or (in this talk) we can try to do this analytically (i.e. enforcing our 'knowledge' explicitly.) Or we can combine both approaches.

IMPLICITLY VS ANALYTICAL

WHAT IS EXACTLY $f(\vec{\theta})$? ⃗

Implicit: $f(\theta)$ *is a NN.* ⃗

Generally, NN will be a black-box transformation from physics-space to data-space (with pros & cons). E.g. If you learn f(θ) you can perfectly match the performance of your detector, but *you can't access intermediate information.* ⃗

IMPLICITLY VS ANALYTICAL

WHAT IS EXACTLY $f(\vec{\theta})$? ⃗

Implicit: $f(\theta)$ *is a NN.* ⃗

Generally, NN will be a black-box transformation from physics-space to data-space (with pros & cons). E.g. If you learn f(θ) you can perfectly match the performance of your detector, but *you can't access intermediate information.* ⃗

Analytic: f(θ) is a full forward model implementation based on an analytical description of all *the processes.* ⃗

You can optimize and inspect all of the model parameters. You run it on calibration data to *tune the simulation. You run it on physics data for reconstruction. It is very easy to propagate systematics.*

IMPLICITLY VS ANALYTICAL

WHAT IS EXACTLY $f(\vec{\theta})$? ⃗

Implicit: $f(\theta)$ *is a NN.* ⃗

Generally, NN will be a black-box transformation from physics-space to data-space (with pros & cons). E.g. If you learn f(θ) you can perfectly match the performance of your detector, but *you can't access intermediate information.* ⃗

Analytic: f(θ) is a full forward model implementation based on an analytical description of all *the processes.* ⃗

You can optimize and inspect all of the model parameters. You run it on calibration data to *tune the simulation. You run it on physics data for reconstruction. It is very easy to propagate systematics.*

A TOY PROBLEM USING CHERENKOV PHYSICS

Our differentiable physics model needs to consider the following elements:

- DETECTOR GEOMETRY
- INITIAL CONDITIONS *(Particle(s) Kinematics & Positions)*
- PARTICLE PROPAGATION
- PHOTON PROPAGATION
	- DETECTOR RESPONSE

CHOOSING A FRAMEWORK

What simplifications can we do to isolate the 'core' problems of interest? Priority is to code up differentiable photon propagation & detector response.

We want something with 1) built-in autodiff 2) ~geometry functionality.

Let's look at Industry, what do they use in ray-tracing applications?

e Taichi Lang

<https://github.com/taichi-dev/taichi>

SIMULATION PROCEDURE - I

1 DETECTOR GEOMETRY

Let's assume a cubic detector made up of NxNxN voxels. (nominally N=128)

Let's assume there are two types of voxels: 1) Detector Voxels 2) Sensor Voxels All inner voxels All voxels in the surface

SIMULATION PROCEDURE - II

2 INITIAL CONDITIONS & (3) PARTICLE PROPAGATION

Let's assume 1 particle, starting in any inner voxel with any inner direction.

Let's assume the particle has infinitesimal length (no particle propagation).

6 Degrees of freedom: (position \vec{x} *, and direction* \vec{v} *)*

SIMULATION PROCEDURE - III

4 PHOTON PROPAGATION

Uniformly sample photons in a cone around track direction (~Cherenkov like emission). Assume fixed angle (but this could be additional degree of freedom).

Propagate N_{phot} *photons (assumptions discussed later) until a photosensor (surface) is reached. Step-by-step voxel propagation thanks to Taichi capabilities for sparse computation.*

 N_{phot} is an additional degree of freedom.

SIMULATION PROCEDURE - IV

Count how many photons arrive to each photosensor.

 A ssume that each photon contribute $e^{-L/\lambda_{att}}$ counts. With L being the photon path length and λ_{att} the *attenuation length, which is an additional degree of freedom.*

GENERATING 'DATA'

Select true parameters:

1

2

 $(\vec{x}, \vec{v}, \lambda_{att}$ and N_{phot} $=$ 8 params in total) ⃗

Create one event display by running the forward.

Data ≡ *Retain only the number of photons in every sensor voxel.*

OPTIMIZATION

Repeat until convergence:

1

- *Select reco parameters:*
	- $(\vec{x}, \vec{v}, N$ and N_{phot} $=$ 8 params in total) ⃗
- *Calculate photons final position by running forward for the 8 reco parameters 2*
	- *3 Calculate loss.*
	- *4 Use gradients to update the reco parameters.*

We can simultaneously minimize calibration-like quantities (e.g. the light attenuation constant) *and reconstruction-like quantities (track parameters) via gradient descent.*

We can simultaneously minimize calibration-like quantities (e.g. the light attenuation constant) *and reconstruction-like quantities (track parameters) via gradient descent.*

LIMITATIONS

Current results support viability of further exploring differentiable physics models as a future solution to integrate calibration & reconstruction in a single framework.

Major challenge: In the exploration so far we have not included (or have bypassed) dealing with processes that are inherently stochastic (e.g. scattering, reflections...).

Taichi does not yet support auto differentiation for sampling operations.

LET'S USE 'SIMPLE-SIM'

Not truly from scratch...

Developed non-differentiable simple Cherenkov simulator for other projects in CIDER-ML using *numpy. (see [J.Xia's Talk](https://indico.phys.ethz.ch/event/113/contributions/826/)!)*

Example of a diffuse event (isotropic light with common origin) Example of a Cherenkov-like event

Let's translate numpy to JAX, and use it for our purposes.

Select true parameters: (\vec{x} *,* \vec{v} *,* θ *_{CH})* ⃗

Select true parameters: (\vec{x} *,* \vec{v} *,* θ *_{CH})* ⃗

C. JESÚS-VALLS NPML 28TH JUNE 2024

Select true parameters: (\vec{x} *,* \vec{v} *,* θ *_{CH})* ⃗

C. JESÚS-VALLS NPML 28TH JUNE 2024

NEXT STEPS & CONCLUSIONS

We have implemented two independent differentiable models of a toy Cherenkov detector. *https://github.com/CIDeR-ML/simpleCherenkovSim/tree/autodiff_test https://github.com/CIDeR-ML/taichi-cher-sim/tree/main*

Next step is to add up stochastic processes and optimize related physics parameters (scattering, reflections).

Are we ready to build end-to-end analytical models? No. But do we want to keep working in the same way in the next 20 years?

Walking steps in the direction of alternative solutions can help us to understand their limitations & advantages. Differentiable detector simulations have the potential to redefine old-existing paradigms in HEP-ex.

Back Up

STANDARD CALIBRATION

SUPER-K CALIBRATION AS AN EXAMPLE *[arXiv:1307.0162](https://arxiv.org/pdf/1307.0162)*

CHANNEL BY CHANNEL INFORMATION

DETECTOR LEVEL INFORMATION

STANDARD RECONSTRUCTION

SUPER-K RECONSTRUCTION AS AN EXAMPLE *developed from MiniBooNE [arXiv:0902.2222](https://arxiv.org/pdf/0902.2222)*

• For each particle type option (μ , e , π ...) maximize over track params (kinematics).

OPTIMIZATION

Repeat until convergence:

1

2

Select reco parameters:

 $(\vec{x}, \vec{v}, N$ and N_{phot} $=$ 8 params in total) ⃗

Calculate photons final position by running forward for the 8 reco parameters

3 Calculate loss.

Example:

 $Loss = \sum$ *N photons i distance_to_closest_PMT*(*pi*) × *PMT_loss_term PMT_loss_term* = *fired PMTs* ∑ *time_distance_to_closest_photon^j j*

time_distance_to_closest_photon^j = *abs*(*time_PMT^j* − *time_closest_photon^j*)

In the future we plan to have an optimal transport inspired loss using Wasserstein *distance between predicted & data event.*

4 Run backward & update the reco parameters.

C. JESÚS-VALLS NPML 28TH JUNE 2024