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Introduction

* CNN-based networks reshaped event reconstruction f

2

Phys. Rev. D99, 092001 (2019)

GNN proved to

- naturally sparse

- N0 Image

pre-processing
- flexible structure
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Chapter 1: The Data

2= Fermilab
3 2024/06/27



arXiv:2309.15362

IVI i c rO B OO N E O pe n Sa m p I es https://microboone.fnal.gov/documents-publications/public-datasets/

* Two “overlay” samples: BNB inclusive and BNB intrinsic ve

Cosmic ray background
and noise from data

2% Fermilab
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https://arxiv.org/abs/2309.15362

arXiv:2309.15362

IVI i c rO B OO N E O pe n Sa m p I es https://microboone.fnal.gov/documents-publications/public-datasets/

* Two “overlay” samples: BNB inclusive and BNB intrinsic ve

Cosmic ray background
and noise from data

Simulated neutrino interaction

2% Fermilab
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https://arxiv.org/abs/2309.15362

MicroBooNE Open Samples — Overview

* Inspired by FAIR principles (findable, accessible, interoperable, reusable data)

« Samples available under “cc-by” license. Template text for acknowledgment is provided.
- requesting resulting software products to be made available

* Two formats: targeting LArTPC and broader data & computer science communities

6

- art/ROOT is the same format as used by the collaboration.
 Files are stored on persistent dCache pool area and made accessible with xrootd

- HDF5 include a reduced subset of the art/ROOT information in a simplified format for usage by non-experts.
* Files stored on Zenodo, providing citable DOI (digital object identifier) & versioning.

* Extensive documentation and tutorials are also made public.
- Notebooks show how to access the data, demonstrate useful applications, define reference performance metrics

2024/06/27

Sample

Inclusive, NoWire
Inclusive, WithWire

Electron neutrino,
NoWire

Electron neutrino,
WithWire

DOI

10.5281/zen0do0.8370883

10.5281/zenodo.7262009

10.5281/zeno0do.7261921

10.5281/zen0do.7262140

HDF5

N events

753,467

24,332

89,339

19,940

N files

18
18

20

20

size

195 GB
44 GB

31 GB

39 GB

artroot

N
files

N events

1,046,139 24436

24,332 720

89,339 2151

19,940 540

size

6.4 TB
136 GB

761 GB

170 GB

arXiv:2309.15362
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https://www.go-fair.org/fair-principles/
https://creativecommons.org/licenses/by/4.0/
https://zenodo.org/
https://arxiv.org/abs/2309.15362

Chapter 2: The Model
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Breaking news!

NuGraph2: A Graph Neural Network
for Neutrino Physics Event Reconstruction

A. Aurisano and V Hewes
University of Cincinnati, Cincinnats, OH 45221, USA

G. Cerati and J. Kowalkowski
Ferm: National Accelerator Laboratory, Batavia, IL 60510, USA

C. S. Lee and W. Liao
Northwestern University, Evanston, Il 60208, USA

D. Grzenda, K. Gumpula, and X. Zhang?
Data Science Institute, Unwversity of Chicago, Chicago, IL 60637, USA

» Paper accepted by Phys. Rev. D [arXiv:2403.11872]

* Preprocessed training data set and trained model available on Zenodo
- https://zenodo.org/records/12169756

2= Fermilab
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https://zenodo.org/records/12169756
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Graph Construction
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* Main inputs to the GNN are the Hits

- hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS

- currently using Hits associated to the
neutrino interaction by Pandora
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Graph Construction

e Wires * Main inputs to the GNN are the Hits
uv X Vwire plane waveforms - hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS

- currently using Hits associated to the
neutrino interaction by Pandora
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* Within each plane hits are connected
Cothode n a graph using Delaunay
Plane trlangulatlon
- fully connected graph
- both long and short distance edges
K - connect across unresponsive wire regions
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https://en.wikipedia.org/wiki/Delaunay_triangulation

Graph Construction
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* Main inputs to the GNN are the Hits
- hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS

- currently using Hits associated to the
neutrino interaction by Pandora

* Within each plane hits are connected
in a graph using Delaunay
triangulation
- fully connected graph
- both long and short distance edges
- connect across unresponsive wire regions

2023 J. Phys.: Conf. Ser. 2438 012091

Edge Type Data Type Labeling Scheme Accuracy

Delaunay 2D Simple 86.24%
Window 2D Simple 76.9%
kNN 2D Simple R1.14%
Radius 2D Simple 78.58%
L,.: -
e Fermilab



Graph Construction

oo Wires * Main inputs to the GNN are the Hits
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NuGraph2 Planar block Nexus block

Network architecture

» NuGraph2’s architecture is an iterative Y \
message-passing network. | {D“Odef/ [ P | [ bn
3 |
* Each message-passing iteration consists of ol ) éd,-
two phases: - g
_ . . ; { Nexus } mijT T ik
- Planar block: pass messages internally in each O : - \ :
plane. £] Tp,’ [ Z |
N 1 I J
- Nexus block: pass messages up to 3D nexus -3 Te,-- t ik
' : . Planar / (
nodes to share context information. = [ } . J
: l ap ! n
_ X,& \ by si—2 1
* Messages are based on a categorical N En L - [ )
embedding: — o i
E 0 E

- Each semantic category is provided with a xf ", sum Pooline Tue
separate set of embedded features, which are {Encode,J - | [ 0,
convolved independently. A : Jy "ean Pooling .

- Context information is exchanged between T | ............ e | Concatenation I
different particle types via a categorical cross- oo !
attention mechanism. " -

3¢ Fermilab
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Decoders

* The last step at the end of the message passing network
are the decoder steps

* Paper describes two node classifications decoders:
- Semantic: classifty each hit by particle type
- Filter: separate hits from neutrino interaction from background

- Output both class-wise scores from the semantic decoder and a
binary score from the filter decoder

- Same learned features are used as input to all decoders

- Different loss functions weighted based on per-task variance
(arXiv:1705.07115)

* Work in progress on more decoders: neutrino flavor,
vertex regression, object condensation
- see Adam’s talk!

15 2024/06/27
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https://arxiv.org/abs/1705.07115

Performance on Simulation: Filter

- 1.0

- 0.8

* Decoder trained to separate neutrino-
induced hits from background (noise or
cosmic-induced hits)

- Pandora slicing tends to prioritize completeness
over purity

signal

True label

noise

e Performance metrics:
- recall and precision: ~0.98

- 0.0

|
noise signal
Assigned label

2= Fermilab
16 2024/06/27



Performance on Simulation: Semantic _

* Decoder trained to classify each neutrino-induced
hit according to particle type

* Use five semantic categories:

MIP: Minimum ionizing particles (muons, charged pions)
HIP: Highly ionizing particles (protons)

EM showers (primary electrons, photons)

* Performance metrics:
- recall and precision: ~0.95

- consistency between planes around 98%
e compared to ~70% without 3D nexus edges

17

Michel electrons

Diffuse activity (Compton scatters, neutrons)

2024/06/27

precision (purity)
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True label

diffuse

HIP shower michel
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I

diffuse
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|
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|
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o B .
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0.013 0.0033
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- 0.8
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Performance on Simulation: Event Display

* Filter successftully rejects hits that are not from the neutrino interaction,
Including cosmic tracks that are close to it

u Y y
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time

Performance on Simulation: Event Display

» Semantic classification correctly classifies hits classes both in events with a
simple topology and also in higher multiplicity events.

semantic truth diffuse @ MIP e shower © HIP ® michel
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. ’ 2 T \
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(c) Semantic truth, filtered by truth
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Chapter 3: Deploying NuGraph2

2= Fermilab
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Integration in LArSoft

* NuGraph2 is integrated in the software framework for LArTPC experiments, LArSoft

* Model compiled with JIT and run using the libtorch C++ library.

- Integrated a package for Delaunay triangulation as well.
- Inference results are stored in the Event record for usage in downstream reconstruction and analysis.

* Inference module takes 0.75 s per event event on CPU, including graph construction
* Enables running in production workflows for LArTPC experiments!

 Currently exploring more flexible integration methods based on NVIDIA Triton inference
server (NuSonic: arXiv:2009.04509)

source:RootInput(read)
reco:nuslhits:NuSliceHitsProducer
reco:sps:SpacePointSolver
reco:NuGraph:NuGraphInference

[art]:TriggerResults:TriggerResultInserter
end_path:rootOutput:RootOutput
end_path:rootOutput:RootOutput(write)

21 2024/06/27

Al Inference Cluster
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https://arxiv.org/abs/2009.04509

First Look at Performance in MicroBooNE Data

* First tests on MicroBooNE data events passing a loose ve CC preselection

* The filter decoder seems to overly reject shower hits from the neutrino

interaction, so domain shifts between the training data set and the application
data are being investigated.

Time Tick

Prediction - Filter (BNB Data, Run 5729 Event 6086) Prediction - Filter (BNB Data, Run 5512 Event 5737)
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First Look at Performance in MicroBooNE Data

* First tests on MicroBooNE data events passing a loose ve CC preselection

* Encouraging performance for the semantic decoder: NuGraph2 correctly tags

shower hits both from primary electrons (left plot) and photons (right) from 10
background.

Prediction - Semantic (BNB Data, Run 5729 Event 6086) MBOQ Prediction - Semantic (BNB Data, Run 5512 Event 5737) MBOQ
——— >
plane=2 plane=1 plane=0 plane=2 plane=1 plane=0
2500 2600
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é 2200 : ; e MIP é
@ ¥ L3 ’ @ 2000
}g 2100 J ’ E
.. -
i —
2000 + ’ s . — 1800 - — + . >
: | 4 \
1900 - ¢ A' L . e .
¢ - s o . 1600 .
b X .
1800 :
2150 2200 2250 2300 2350 1300 1400 1500 1600 1450 1500 2000 2100 1460 1480 1500 1520 1540 1150 1200 1250
Wire Wire Wire Wire Wire Wire
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First Look at Performance in MicroBooNE Data

* First tests on MicroBooNE data events passing a loose ve CC preselection

* Encouraging performance for the semantic decoder: NuGraph2 correctly tags

shower hits both from primary electrons (left plot) and photons (right) from 10
background.

Prediction - Semantic Confidence (BNB Data, Run 5729 Event 6086) HBO_OQ\ Prediction - Semantic (BNB Data, Run 5512 Event 5737) “BO_OQ
—
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Chapter 4: Interacting with NuGraph?2

2= Fermilab
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Network Explainability: Latent Space

step #1 step #3 step #5

mm Background
- P

- HP

mm shower

e michel
. dffuse

» Explainability: Goal is to “open the black box” to |u
build confidence and drive developments.

- Find that some “standard” tools for GNN interpretability
(e.g. GNNEXxplainer) struggle with our network

* First study is the visualization of latent space:

- Cluster latent node features (320D space) and project in
2D for visualization

- Clear separation between different categories is
achieved by the last (5th) network message-passing
iteration

2t Fermilab
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Network Explainability: “Hub Nodes”

* Understanding the role of *hub” nodes

- Feature of Delaunay triangulation: detached nodes have large
edge multiplicity and connect nodes within and across objects

- These nodes introduce a large degree of redundancy, but also
create a bridge for nodes at beginning/end of an object
* Performed a pruning test:

- Aiming at understanding how many edges are essential and what
are their properties

- Find that 12 is the lowest upper bound in multiplicity without
affecting performance, when pruning edges uniformly in terms of
length

* Demonstrates that there is a degree of redundancy up to
a few 10% of the edges, and that both short and long

edges matter.
- Can also lead to network speedups, both for training and inference

27  2024/06/27

B Background
e MIP

Bm HIP

B shower
B michel
B diffuse

Maximum Node Degree = 12

2= Fermilab



Injecting Physics Domain Knowledge: Michel electrons

_ _ % uBooNF’Z
* Michel electrons are the class least represented in our | /
training dataset and the one with worst performance in terms oy ¥ b
of semantic classification

» Can we find ways to supplement the limited training data set
and drive the network to learn better this category?

JINST 12, P09014 (2017)

* A few ideas are being explored:

lonization Reconstructed Energy Spectrum

- Michel electrons are the product of the decay at rest of a muon (MIP). | i  DATA
Teach this correlation to the network by adding a decoder that predicts . ¥H} Simulation
the fraction of hits in each class in the event i* }

- The Michel energy spectrum is a well defined function. Teach this 15| t MicroBooNE |
property to the network by penalizing events where the sum of : ; statistical errors only
predicted Michel hit integrals is not compatible with the expected p.d.f. Lol }

O
o)
1o
L g

* Results for these tests are coming soon!

reconstructed Michel electrons / 10° cosmic events
—H

O
oO
.

1 j _ et etv.
10 20 30 40 50 60 70 80
reconstructed energy [MeV]
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https://doi.org/10.1088/1748-0221/12/09/P09014

Injecting Physics Domain Knowledge: Augmented Features

|t turns out that GNNs are not aware of the
structural role of nodes
- They do not learn the graph structure

- GNNSs do not distinguish graphs that are isomorphic
according to the Wesfeiler-Lehman test

arX1iv:2006.09252

* Adding the graph structural information (e.g.

triangles, circles) may help with classification
- This can be implemented by a structure-aware
message passing which contains structural

iInformation about the nodes

Indistinguishable molecules by the WL test and thus message passing NN

2t Fermilab
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Injecting Physics Domain Knowledge: Augmented Features

nominal augmented

 Add structural and non-local
features to

- Atime, Awire between 2 closest nodes
- distance to closest node Dmin

- edge multiplicity Ne i

Atime
Ne=2

Awire

* Improves the network performance
across the board

- ~5% (relative) improvement for the
Michel category

michel

Assigned label diffuse e
ag Fermiiab
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Conclusions

* NuGraph?2 is a GNN for reconstruction in LArTPC detectors
- competitive performance for filter and semantic classification tasks

* Deployment in experiments’ workflows in ongoing
- integrated in LArSoft, promising results in data

* Work ongoing to interpret and further improve the network
- stay tuned for Adam’s talk for NuGraph3 developments!

2% Fermilab
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