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uBooNP Outline

e The MicroBooNE detector and NuMI
e Overview of dark trident search
e A CNN for signal and background classification

e Results
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MicroBooNE: Rich physics program:
e Liquid argon time projection chamber (LArTPC) e Neutrino physics (Oscillations, cross section)
e Active mass 85 tonnes e BSM physics (This talk)
e Dimensions: 10.36 x2.56 x 2.32 m® e LArTPCR&D
e Atsurface level
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uBooNP MicroBooNE Data

e MicroBooNE has three S A
wire planes. Each plane € COIONE wEnAlEe
produces a 2D view of the
charged particles
interacting with the
detector volume

Time tick

e Spatial resolution of 3 mm
per pixel

e (Good calorimetric
capacity

e The image shown here
corresponds to the
collection plane

Run 3493 Event 27435, October 23rd, 2015

0 Wire number 3455
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uBooN2 Dark Tridents: A Dark Sector Portal

e DM candidate can be produced at fixed-target facilities through neutral meson decays
e Off-axis search of DM scattering has been proposed in: arXiv:1809.06388
e Interaction channel: DM scattering with the emission of an on-shell dark photon
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https://arxiv.org/abs/1809.06388

nBooNE Search Strategy
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uBooNE Search Strategy
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uBooNE Search Strategy

NuMI Beamline Side View
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uBooNE Search Strategy
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One of the most
problematic
backgrounds are
nu-Ar interactions
producing neutral
mesons or single
photons



uBooNE Search Strategy
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> Signal or background?
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uBooNP A CNN for Background Rejection

e For this analysis we took advantage of the ——
existing architecture developed for the
Multi-Particle Identification Network (MPID)

e The CNN input are 512x512 MicroBooNE
images cropped around the interaction vertex

e MPID’s has filters with a size comparable to :

the activity expected on showers and tracks

Fully Connected Layer, 1,536 nodes

e The final layer has been configured to output
the probability of having either dark trident n
signal or background interactions i

MPID details: Phys. Rev. D 103, 092003
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.092003

Time Ticks

0 ] 3455

Wire Number
e Images are compressed by a factor of 6 on e The images are stored in a user-friendly
the time tick axis format using the LArCV package
e Cropping around of the interaction vertex e A dedicated training/test set containing a
obtaining an image of 512x512 pixels benchmark signal sample and neutrino
e For training true vertex is used. In contrast NCpiO interactions was created. Cosmic rays
for the actual analysis we use reco vertex tracks were also included

(provided by pandora)
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uBooNP Network Training

e Training set size: 62879 i i I
e Hardware: NVIDIA V100 ARl AN y :

e lterations: 11786 (~5 epochs) 0.9 11 < st | il
e Time: ~4 hours A o ;
e Batch size: 32 o 1] |
e Learning rate: 0.001 @ P E
e Adam optimizer s 'l P E
e Dropout layers and L2 regularization < ] P E
were implemented to control the 0'6;_ i i i
overfitting osh o i
e Binary cross entropy loss and accuracy Tt e i i E
were used to monitor the training 5 41_ —— Testaccuracy | | |
02000 4000 6000 8000 10000

Step
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nBooNP Training Results

CNN Score Distribution

10° CNN Confusion Matrix
A Training set: Signal =
L Training set: Background
A Test set: Signal e o 261 2492
A Test set: Background _ ,Swg 4.0% 36.0%
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e The CNN achieves good separation of signal and background
e It reaches ~93% of accuracy
e (Good generalization to signal samples simulated with different masses
e No signs of overfitting
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Training Results

uBooNP

Dark photon mass: 50 MeV

Drift Time

)
E
[
&
—
m]

i

A

Signal score: 0.997
Dark Trident Simulation

Wire Number

Searching for Dark Tridents with Convolutional Neural Networks, Luis Mora-Lepin

- il

"Sig{al‘;ore: 0.940

Dark Trident Simulation

Wire Number

16



uBooNE Occlusion analysis

e In this test a zone of nxn
pixels in the image is
‘hidden’ before passing it to
the CNN

e The CNN score will vary if
important pixels of the
image are occluded

Drift Time

. . . Si I : 0.997
e Pixels at the beginning of Dark Trident Simulation

the showers contribute with Wire Number
important features

Signal Score Map
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uBooNE

The electron-positron shower
direction typically point back to the
NuMI target

On the other hand, less neutrinos
are expected from this direction as
a result of the focusing horns

We study if the CNN is able to
infer the typical dark trident
direction respect to NuMI

Note: The MPID network was
trained with isotropic angular
distributions

Angular Dependance

Number of entries

CNN Score of Rotated Distributions
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uBooN2 Inference Over Analysis Datasets

e The background prediction is MicroBooNE Simulation Run 3

composed of cosmic-ray (beam-off) S0oo0) >
interactions, and neutrino
interactions produced inside and

5000 f
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outside the cryostat o TR MW Out of cryo
;é; - B Incryov
> 3000 [ [ Dark trident
. m
e The CNN also generalizes to
events coming from these three o
background samples 1000 JJ_
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CNN signal score
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uBooNP Inference Over Analysis Datasets

e The background prediction is MicroBooNE NuMI data Run 3 5.0 x 10%° POT
H Data/MC = 0.97
composed of cosmic-ray (beam-off) Sl B
interactions, and neutrino - I‘:‘u;zzcvrw
interactions produced inside and 103 ¥ NuMi data
outside the cryostat B
e The CNN also generalizes to i3
events coming from these three
background samples
e \We also checked the performance N
. = 05
over data collected using the NuMI e —
beam over a control region (CNN S
0.0 0.1 0.2 0.3 0.4 0.5
score < 05) CNN signal score
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uBooNP Results

e The CNN score region above 0.5 is

MicroBooNE Simulation Run 3

used to probe the dark trident B4 b
hypothesis 1165 ]
2000 E E Beam-off
e The scores are passed through a logit =i
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uBooNP Results

e The CNN score region above 0.5 is
used to probe the dark trident

MicroBooNE NuMI Data Run 3, 5.0 x 102° POT

. [ Beam-off
hypothesis 250 W Out of cryo v
I Incryov
. » 200 — Dark trident
e The scores are passed through a logit = - ;=7><10“‘
. . . > eam-on
transformation which maps the interval i S5
(0.5,1.0) to (0, infinity) 100
. . 50
e The number of candidates found in the
NuMI data is consistent with the L
background expectation s 05 + =
R - s - T
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S 00 1.4 2.8 4. 5.5 6.9+

CNN signal score (M, =50 MeV)
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uBooNP Results

e The CNN score region above 0.5 is o1
used to probe the dark trident
hypothesis
. High charge
e The scores are passed through a logit a5
transformation which maps the interval E
(0.5,1.0) to (0, infinity) =
(@]
e The number of candidates found in the Low charge
NuMI data is consistent with the ,
. MicroBooNE NuMI Data
background expectation Signal score: 6.358
Run: 5985, Subrun: 28, Event 1446
0 ald

Wire Number
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uBooNP MicroBooNE Limits

Scalar DM (ap = 1.0, My/M, = 0.6) Fermion DM (ap = 1.0, M,/M, = 0.6)
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e The results obtained were used to set constraints to different combinations of the parameter
space using the CLs method

e The limits obtained by MicroBooNE are the most stringent ones for dark photon masses below
100 MeV
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uBooNP Conclusions

e We have successfully implemented a CNN to discriminate
dark trident interactions from neutrino interactions and
cosmic rays Sl

e The CNN was used to search for dark trident candidates in
dataset collected using the NuMI beam High charge

e Afew candidates were found but the number is consistent
with background expectation. New constraints on the model
parameter space were obtained Low charge

Drift Time

. . . MicroBooNE NuMI Data
e This technique can be generalized to other BSM models Signal score: 6.358

and LAFTPC experiments Run: 5985, Subrun: 28, Event 1446

0 511
Wire Number

e Results published by PRL: Phys.Rev.Lett. 132 (2024)
24, 241801
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.241801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.241801

uBooNP

Backup

Searching for Dark Tridents with Convolutional Neural Networks, Luis Mora-Lepin



uBooNE Training and Test Set

Type of event Number of events in training set Number of events in test set
Dark trident 12601 1399
Dark trident + Cosmic rays 11776 1299
NCr" 12601 1399
NC7" + Cosmic rays 12601 1415
Cosmic rays only 13300 1399
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uBooNE The MicroBooNE Detector
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uBooNE MicroBooNE Dataset

¢ Daily neutrino beam 25
e Daily antineutrino beam
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