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The SNO+ Detector

 Multipurpose neutrino physics experiment
* Located 2km underground at SNOLAB /1
 ~6000m water equivalent, flat overburden / L
« Held within large cavity filled with 7kt of N/
ultrapure water for shielding '

* 12m diameter spherical acrylic vessel (AV) —

* AV filled with 780t of liquid scintillator
* LAB (bulk solvent) + PPO (fluor)
» High light yield; ~250 hits/MeV

* Surrounded by ~9400 photomultiplier tubes
(PMTs) to detect light from interactions

* 18m diameter PMT support structure
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Position Reconstruction
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Position Reconstruction o
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Position Likelihood

* Averaged distribution of time
residuals derived from MC
Lres = thit — Levent — LToF
e PMT hittime is observable

* Time of flight (ToF) is from candidate
event position, Feyent = (X, Y, Z), to hit
PMT
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* Optimize event position and event time for likelihood that observed time residual
distribution drawn from this PDF; product over the number of hit PMTs (N, ;<)
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Position Likelihood

Nhits
* Averaged distribution of time Lyertex = ‘ ‘ P(tres;i)
residuals derived from MC i=1
tres = thit — ¢ —t
res hit event ToF Nhits

e PMT hittime is observable
_ln(Lvertex) — = z 1nP(tres,i)
=1

* Time of flight (ToF) is from candidate
event position, Feyent = (X, Y, Z), to hit
PMT

* Optimize event position and event time for likelihood that observed time residual
distribution drawn from this PDF; product over the number of hit PMTs (N, ;<)
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Position Likelihood

* Light travels through three materials in simplest
case: time of flight must be estimated with
analytic light path calculator

* Time residuals distribution has dependences on
energy and position; mitigated with effective

corrections
* Effective speed of light which scales linearly
with Ny
* Separate time residual PDFs used for
different radial shells
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Motivation for Machine Learning Methods

Likelihood method is comparatively slow (relative to trained model)

Likelihood method can fail to converge

Potential to improve upon areas where likelihood method does not do as well
(near the AV, neck)

Independent, complementary approaches are always welcome

* |dentify and correct problems (in either algorithm)
* Could be used as a seed to the likelihood method
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* Not straightforwardly applied to the data

* |Inputs are not the same length from event to
event

« Geometry needs to be provided in some way
(either in the data itself or in the architecture)

* Naive solutions fail
* Feeding the network a length ~9400 vector of i
mostly zeroes: typical event is too sparse
* Projecting the 3D spherical detector onto a 2D
surface: no clear way to do this (all projections

will distort the original)

G UNIVERSITY OF S NQ
2/ OXFORD

M. Anderson & C. Hewitt « NPML 2024 9 ) Queen's



Architecture 1: Convolutional Neural Network

(Nhits, 4) (Nnits, FO)

(Nnits, 7 )
% % % O * |nputisthe set of PMT hit information,
- % % O (Xhit» Yhit» Zhit thit), for each PMT

j e Network consists of a 1%x1
N convolutional feature extractor

( com = » * Commutative operation (mean) applied
Nhits = . .
over Nhits axis

O * Outputs fixed-length, permutation-
O invariant representation of size F

* New representation is fed to a standard fully-connected neural network which
predicts the Cartesian coordinates of the event position, 7.y qn¢
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Architecture 2: Transformer

N =6 encoder

blocks in
n=4 self-attention heads series
A
MLP
d = 64
model I < H - dh|dden 128 -
Input: X
Unordered R v Readout
set of PMT Tokenizati y
hits okenization 7
N MLP -
dhldden 128
Not shown: skip-
. _ connections &
In practice clip/pad . normalizations
to fixed context \ ) before SA & MLP

x N..
X Npits X Nhits Nh'ts
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Architecture 2: Transformer

Calibrated hit

S Fully learnt features for ||

= L ti

E each PMTID P _ MLP ime |

'S Outperforms mapping vector add | dhidgen = 512 . Any event-wise

L PMT (x,y,z) / Fourier O information mapped

2 embedding with MLP [] onto every token
0 (Nhits =)

5 Mean pool Slightly outperforms No improvgment

9 reading out from from supplying Npts

o dummy token at top and regressing

o X Npits of stack event energy
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Datasets

* Models trained and evaluated on simulated single electrons

* Uniform in energy from 0.5 -10 MeV: covers (almost) all events of physics
interest in SNO+

* Uniformly distributed inside the acrylic vessel
* |sotropic in momentum

* 1 million events in dataset of which 900,000 used for training; 5,000 for
validation; 95,000 for evaluation

M. Anderson & C. Hewitt « NPML 2024 13

,( UNIVERSITY OF S NQ
2/ OXFORD



Normalized counts

Results: residuals

Normalized counts
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Results: residuals
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Results: resolution / energy
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Results: resolution / radius
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Results: bias / energy
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Results: bias / radius
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Results: inference time

Inference time (per event)
Method CPU GPU
[event-by-event] [batched]
Neural network ~10 ms <1ms
Transformer ~170 ms <1ms
Likelihood ~150 ms N/A
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Conclusions

 We present two neural network architectures which effectively ingest SNO+

events; sparse, unordered sets of PMT hits with a variable number of nonzero
channels

* Deep learning approaches can provide gains in resolution and a significant
reduction in radial bias compared to a maximum likelihood-based method

* Effectively learns dependencies and allows asymmetric and otherwise

difficult regions to be modelled without complex corrections to the
likelihood method
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Ongoing and Future Work

* Investigating direction reconstruction with promising results
* Difficultin liquid scintillator due to dominance of isotropic scintillation light

e Studying simultaneous position and direction reconstruction

* PMT hit patterns depend on both position (mostly) and direction
* Provides the network with more information
* Should lead to improvements in both

* Other architectures (e.g., GNNs) show promise
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