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The SNO+ Detector
• Multipurpose neutrino physics experiment
• Located 2km underground at SNOLAB

• ~6000m water equivalent, flat overburden

• Held within large cavity filled with 7kt of 
ultrapure water for shielding

• 12m diameter spherical acrylic vessel (AV)
• AV filled with 780t of liquid scintillator

• LAB (bulk solvent) + PPO (fluor)
• High light yield; ~250 hits/MeV

• Surrounded by ~9400 photomultiplier tubes 
(PMTs) to detect light from interactions
• 18m diameter PMT support structure
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Calibrated PMT hit time (ns)

Event near the detector centre

Position Reconstruction
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Calibrated PMT hit time (ns)

Event near the detector edge

Position Reconstruction
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Position Likelihood
• Averaged distribution of time 

residuals derived from MC

𝒕𝐫𝐞𝐬 = 𝒕𝐡𝐢𝐭 − 𝒕𝐞𝐯𝐞𝐧𝐭 − 𝒕𝐓𝐨𝐅
• PMT hit time is observable

• Time of flight (ToF) is from candidate 
event position, 𝑟,-,./ = 𝑥, 𝑦, 𝑧 , to hit 
PMT

• Optimize event position and event time for likelihood that observed time residual 
distribution drawn from this PDF; product over the number of hit PMTs (Nhits)



6 M. Anderson & C. Hewitt  •  NPML 2024

Position Likelihood
• Averaged distribution of time 

residuals derived from MC

𝒕𝐫𝐞𝐬 = 𝒕𝐡𝐢𝐭 − 𝒕𝐞𝐯𝐞𝐧𝐭 − 𝒕𝐓𝐨𝐅
• PMT hit time is observable

• Time of flight (ToF) is from candidate 
event position, 𝑟,-,./ = 𝑥, 𝑦, 𝑧 , to hit 
PMT

ℒ$%&'%( = #
)*+

,-.'/

𝑃(𝑡&%/,))

− ln ℒ$%&'%( = − +
)*+

,-.'/

ln 𝑃(𝑡&%/,))

• Optimize event position and event time for likelihood that observed time residual 
distribution drawn from this PDF; product over the number of hit PMTs (Nhits)
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Position Likelihood

• Light travels through three materials in simplest 
case: time of flight must be estimated with 
analytic light path calculator

• Time residuals distribution has dependences on 
energy and position; mitigated with effective 
corrections 
• Effective speed of light which scales linearly 

with Nhits

• Separate time residual PDFs used for 
different radial shells

PMT
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Motivation for Machine Learning Methods

• Likelihood method is comparatively slow (relative to trained model)
• Likelihood method can fail to converge
• Potential to improve upon areas where likelihood method does not do as well 

(near the AV, neck)
• Independent, complementary approaches are always welcome

• Identify and correct problems (in either algorithm)
• Could be used as a seed to the likelihood method
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Challenges of Machine Learning

• Not straightforwardly applied to the data
• Inputs are not the same length from event to 

event
• Geometry needs to be provided in some way 

(either in the data itself or in the architecture)

• Naïve solutions fail
• Feeding the network a length ~9400 vector of 

mostly zeroes: typical event is too sparse
• Projecting the 3D spherical detector onto a 2D 

surface: no clear way to do this (all projections 
will distort the original)
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Architecture 1: Convolutional Neural Network

• Network consists of a 1×1 
convolutional feature extractor

• Input is the set of PMT hit information, 
(𝑥!"#, 𝑦!"#, 𝑧!"#, 𝑡!"#), for each PMT

• Commutative operation (mean) applied 
over Nhits axis

• Outputs fixed-length, permutation-
invariant representation of size 𝐹

• New representation is fed to a standard fully-connected neural network which 
predicts the Cartesian coordinates of the event position, 𝑟$%$&#
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Architecture 2: Transformer

Input: 
Unordered 
set of PMT 

hits Tokenization

…

× Nhits

dmodel = 64

…

× Nhits

MLP
dhidden = 128

MLP
dhidden = 128

…

× Nhits

Readout x

y

z

N = 6 encoder 
blocks in 

series

Not shown: skip-
connections & 
normalizations 
before SA & MLP

n=4 self-attention heads

In practice clip/pad 
to fixed context
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Architecture 2: Transformer

Fully learnt features for 
each PMT ID ⊕

vector add
MLP

dhidden = 512

Calibrated hit 
time

Any event-wise 
information mapped 

onto every token 
(Nhits …)

Outperforms mapping 
PMT (x,y,z) / Fourier 

embedding with MLP 

× Nhits

…
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Mean pool

MLP
Slightly outperforms 

reading out from 
dummy token at top 

of stack

No improvement 
from supplying Nhits 

and regressing 
event energy
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Datasets
• Models trained and evaluated on simulated single electrons
• Uniform in energy from 0.5 – 10 MeV: covers (almost) all events of physics 

interest in SNO+
• Uniformly distributed inside the acrylic vessel
• Isotropic in momentum

• 1 million events in dataset of which 900,000 used for training; 5,000 for 
validation; 95,000 for evaluation
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Results: residuals

1 4
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Results: residuals

1 43 6
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Results: resolution / energy

7 12
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Results: resolution / radius

17 22
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Results: bias / energy

10 15
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Results: bias / radius

20 25
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Results: inference time

Method

Inference time (per event)

CPU
[event-by-event]

GPU
[batched]

Neural network ~10 ms < 1 ms

Transformer ~170 ms < 1 ms

Likelihood ~150 ms N/A
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Conclusions
• We present two neural network architectures which effectively ingest SNO+ 

events; sparse, unordered sets of PMT hits with a variable number of nonzero 
channels 

• Deep learning approaches can provide gains in resolution and a significant 
reduction in radial bias compared to a maximum likelihood-based method
• Effectively learns dependencies and allows asymmetric and otherwise 

difficult regions to be modelled without complex corrections to the 
likelihood method
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Ongoing and Future Work
• Investigating direction reconstruction with promising results

• Difficult in liquid scintillator due to dominance of isotropic scintillation light

• Studying simultaneous position and direction reconstruction
• PMT hit patterns depend on both position (mostly) and direction
• Provides the network with more information
• Should lead to improvements in both

• Other architectures (e.g., GNNs) show promise


